Publications by authors named "Joyce A Lloyd"

Outcome data from 6 National Institutes of Health-funded Postbaccalaureate Research Education Programs (PREPs) in the Mid-Atlantic region were combined to give a multi-institutional perspective on their scholars' characteristics and progress through biomedical research training. The institutions hosting these programs were Johns Hopkins University School of Medicine, the Medical University of South Carolina, the University of Maryland School of Medicine, the University of North Carolina at Chapel Hill, Virginia Commonwealth University, and Virginia Polytechnic Institute and State University. The authors summarize the institutional pathways, demographics, undergraduate institutions, and graduate institutions for a total of 384 PREP scholars who completed the programs by June 2021.

View Article and Find Full Text PDF

Human umbilical cord blood is a rich source of hematopoietic stem and progenitor cells. CD34+ cells in umbilical cord blood are more primitive than those in peripheral blood or bone marrow, and can proliferate at a high rate and differentiate into multiple cell types. In this protocol, a dependable method is described for the isolation of fetal CD34+ cells from umbilical cord blood and expanding these cells in culture.

View Article and Find Full Text PDF

Many experimental models have been used to study erythropoiesis. Even prior to the advent of the genetic manipulation of animal models, erythropoiesis was examined in the mouse, chicken, sheep, goat, and rabbit, among other vertebrates. Erythroid cell lines derived from human blood cancers were also very useful, as they could be genetically manipulated more easily than whole animals.

View Article and Find Full Text PDF

Rationale: Acute respiratory distress syndrome (ARDS) is caused by widespread endothelial barrier disruption and uncontrolled cytokine storm. Genome-wide association studies (GWAS) have linked multiple genes to ARDS. Although mechanosensitive transcription factor Krüppel-like factor 2 (KLF2) is a major regulator of endothelial function, its role in regulating pulmonary vascular integrity in lung injury and ARDS-associated GWAS genes remains poorly understood.

View Article and Find Full Text PDF

In human adult erythroid cells, lower than normal levels of Krüppel-like transcription factor 1 (KLF1) are generally associated with decreased adult β- and increased fetal γ-globin gene expression. KLF1 also regulates BCL11A, a known repressor of adult γ-globin expression. In seeming contrast to the findings in adult cells, lower amounts of KLF1 correlate with both reduced embryonic and reduced fetal β-like globin mRNA in mouse embryonic erythroid cells.

View Article and Find Full Text PDF

The Krüppel-like transcription factors KLF1 and KLF2 are essential for embryonic erythropoiesis. They can partially compensate for each other during mouse development, and coordinately regulate numerous erythroid genes, including the β-like globins. Simultaneous ablation of KLF1 and KLF2 results in earlier embryonic lethality and severe anemia.

View Article and Find Full Text PDF

In order to compare the global gene expression profiles of different embryonic cell types, it is first necessary to isolate the specific cells of interest. The purpose of this chapter is to provide a step-by-step protocol to perform laser capture microdissection (LCM) on embryo samples and obtain sufficient amounts of high-quality RNA for microarray hybridizations. Using the LCM/microarray strategy on mouse embryo samples has some challenges, because the cells of interest are available in limited quantities.

View Article and Find Full Text PDF

Background: Krüppel-like Factor 2 (KLF2) plays an important role in vessel maturation during embryonic development. In adult mice, KLF2 regulates expression of the tight junction protein occludin, which may allow KLF2 to maintain vascular integrity. Adult tamoxifen-inducible Krüppel-like Factor 4 (KLF4) knockout mice have thickened arterial intima following vascular injury.

View Article and Find Full Text PDF

Krüppel-like factor 2 (KLF2) is expressed in endothelial cells in the developing heart, particularly in areas of high shear stress, such as the atrioventricular (AV) canal. KLF2 ablation leads to myocardial thinning, high output cardiac failure and death by mouse embryonic day 14.5 (E14.

View Article and Find Full Text PDF

The Krüppel-like factor 1 (KLF1) and KLF2 positively regulate embryonic β-globin expression and have additional overlapping roles in embryonic (primitive) erythropoiesis. KLF1(-/-) KLF2(-/-) double knockout mice are anemic at embryonic day 10.5 (E10.

View Article and Find Full Text PDF

Krüppel-like factors (KLFs) control cell differentiation and embryonic development. KLF1 (erythroid Krüppel-like factor) plays essential roles in embryonic and adult erythropoiesis. KLF2 is a positive regulator of the mouse and human embryonic β-globin genes.

View Article and Find Full Text PDF

KLF2 is a Krüppel-like zinc-finger transcription factor required for blood vessel, lung, T-cell and erythroid development. KLF2-/- mice die by embryonic day 14.5 (E14.

View Article and Find Full Text PDF

Expression of astrocyte elevated gene-1 (AEG-1) is elevated in multiple human cancers including brain tumors, neuroblastomas, melanomas, breast cancers, non-small cell lung cancers, liver cancers, prostate cancers, and esophageal cancers. This gene plays crucial roles in tumor cell growth, invasion, angiogenesis and progression to metastasis. In addition, over-expression of AEG-1 protects primary and transformed cells from apoptosis-inducing signals by activating PI3K-Akt signaling pathways.

View Article and Find Full Text PDF

Objective: A proapoptotic BH3-only protein BIM (BCL-2 interacting mediator of cell death) can link cytokine receptor signaling with the apoptotic machinery in hematopoietic cells. We investigated here the role of BIM in erythropoietin (EPO)-mediated survival in erythroid cells.

Materials And Methods: We downregulated BIM in EPO-dependent HCD57 erythroid cells with short hairpin RNA (shRNA), and used real-time polymerase chain reaction, Western blots, and flow cytometry to characterize BIM expression and apoptosis.

View Article and Find Full Text PDF

Little is known about the genes that control the embryonic erythroid program. Laser capture microdissection was used to isolate primitive erythroid precursors and epithelial cells from frozen sections of the embryonic day 9.5 yolk sac.

View Article and Find Full Text PDF

The Krüppel-like C2/H2 zinc finger transcription factors (KLFs) control development and differentiation. Erythroid Krüppel-like factor (EKLF or KLF1) regulates adult beta-globin gene expression and is necessary for normal definitive erythropoiesis. KLF2 is required for normal embryonic Ey- and betah1-, but not adult betaglobin, gene expression in mice.

View Article and Find Full Text PDF

Erythropoietic tissues are complex, containing both erythroid and other cells. The embryonic yolk sac in particular contains primitive erythroid cells in low abundance. Laser capture microdissection (LCM) was performed to isolate erythroid cells, and epithelial cells, from mouse embryonic day 10 (E10) yolk sac.

View Article and Find Full Text PDF

EKLF/KLF1 was the first of the Krüppel-like factors (KLFs) to be identified in mammals and plays an important role in primitive and definitive erythropoiesis. Here, we identify and characterize EKLF in the chicken (cEKLF). The predicted amino acid sequence of the zinc finger region of cEKLF is at least 87.

View Article and Find Full Text PDF

Krüppel-like factors (KLFs) have been systematically screened as potential candidates to regulate human gamma-globin gene expression through its CACCC element. Initially, 21 human proteins that have close sequence similarity to EKLF/KLF1, a known regulator of the human beta-globin gene, were identified. The phylogenetic relationship of these 22 KLF/Sp1 proteins was determined.

View Article and Find Full Text PDF

The Krüppel-like factors (KLFs) are a family of C2/H2 zinc finger DNA-binding proteins that are important in controlling developmental programs. Erythroid Krüppel-like factor (EKLF or KLF1) positively regulates the beta-globin gene in definitive erythroid cells. KLF2 (LKLF) is closely related to EKLF and is expressed in erythroid cells.

View Article and Find Full Text PDF

The Krüppel-like factors (KLFs) are a family of Cys2His2 zinc-finger DNA binding proteins with homology to Drosophila Krüppel. KLFs can bind to CACCC elements, which are important in controlling developmental programs. The CACCC promoter element is critical for the developmental regulation of the human gamma-globin gene.

View Article and Find Full Text PDF