The base excision repair pathway removes damaged DNA bases and resynthesizes DNA to replace the damage. Human alkyladenine DNA glycosylase (AAG) is one of several damage-specific DNA glycosylases that recognizes and excises damaged DNA bases. AAG removes primarily damaged adenine residues.
View Article and Find Full Text PDFAged rats display a broad range of behavioral performance in spatial learning. The aim of this study was to identify candidate genes that are associated with learning and memory impairments. We first categorized aged-superior learners and age learning-impaired rats based on their performance in the Morris water maze (MWM) and then isolated messenger RNA from the CA1 hippocampal region of each animal to interrogate Affymetrix microarrays.
View Article and Find Full Text PDFMeasles virus encodes an RNA-dependent RNA polymerase composed of the L and P proteins. Recent studies have shown that the L proteins of both Sendai virus and parainfluenza virus 3 form an L-L complex [Cevik, B., Smallwood, S.
View Article and Find Full Text PDFUracil DNA glycosylase (UDG) excises uracil from DNA to initiate repair of this lesion. This important DNA repair enzyme is conserved in viruses, bacteria, and eukaryotes. One residue that is conserved among all the members of the UDG family is a phenylalanine that stacks with uracil when it is flipped out of the DNA helix into the enzyme active site.
View Article and Find Full Text PDFTo catalyze RNA synthesis, the Sendai virus P-L RNA polymerase complex first binds the viral nucleocapsid (NC) template through an interaction of the P subunit with NP assembled with the genome RNA. For replication, the polymerase utilizes an NP(0)-P complex as the substrate for the encapsidation of newly synthesized RNA which involves both NP-RNA and NP-NP interactions. Previous studies showed that the C-terminal 124 amino acids of NP (aa 401-524) contain the P-NC binding site.
View Article and Find Full Text PDFHuman alkyladenine DNA glycosylase "flips" damaged DNA bases into its active site where excision occurs. Tyrosine 162 is inserted into the DNA helix in place of the damaged base and may assist in nucleotide flipping by "pushing" it. Mutating this DNA-intercalating Tyr to Ser reduces the DNA binding and base excision activities of alkyladenine DNA glycosylase to undetectable levels demonstrating that Tyr-162 is critical for both activities.
View Article and Find Full Text PDFThe Sendai virus P-L polymerase complex binds the NP-encapsidated nucleocapsid (NC) template through a P-NP interaction. To identify P amino acids responsible for binding we performed site-directed mutagenesis on the C-terminal 88 amino acids in the NC binding domain. The mutant P proteins expressed from plasmids were assayed for viral RNA synthesis and for various protein-protein interactions.
View Article and Find Full Text PDF