2,3-Dihydrobenzofurans and indolines are common substructures in medicines and natural products. Herein, we describe a method that enables direct access to these core structures from non-conjugated alkenyl amides and ortho-iodoanilines/phenols. Under palladium(II) catalysis this [3 + 2] heteroannulation proceeds in an anti-selective fashion and tolerates a wide variety of functional groups.
View Article and Find Full Text PDFIndazoles represent a privileged motif in drug discovery. However, the formation of highly substituted indazoles can require the execution of lengthy synthetic routes with minimal opportunities to introduce diversity. In this report, we disclose the development of a late-stage diversification strategy for the 4- and 5-positions of 4,5,6-trisubstituted indazoles.
View Article and Find Full Text PDFAn ongoing challenge in chemical research is to design catalysts that select the outcomes of the reactions of complex molecules. Chemists rely on organocatalysts or transition metal catalysts to control stereoselectivity, regioselectivity and periselectivity (selectivity among possible pericyclic reactions). Nature achieves these types of selectivity with a variety of enzymes such as the recently discovered pericyclases-a family of enzymes that catalyse pericyclic reactions.
View Article and Find Full Text PDFRh-catalyzed C-H functionalization of -pivaloyl benzhydroxamic acids with propene gas provides access to 4-methyl-substituted dihydroisoquinolones. Good to excellent levels of regioselectivity are achieved using [CpRhCl] as a precatalyst under optimized conditions. Thorough examination of aryl/heteroaryl -pivaloyl hydroxamic acid substrates, ligand effects on C-H site selectivity, alkene scope, and demonstration of scale are discussed within.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
July 2019
We report a modular synthetic strategy for accessing heteroatom-containing polycyclic aromatic hydrocarbons (PAHs). Our approach relies on the controlled generation of transient heterocyclic alkynes and arynes. The strained intermediates undergo in situ trapping with readily accessible oxadiazinones.
View Article and Find Full Text PDFFor over a century, the structures and reactivities of strained organic compounds have captivated the chemical community. Whereas triple-bond-containing strained intermediates have been well studied, cyclic allenes have received far less attention. Additionally, studies of cyclic allenes that bear heteroatoms in the ring are scarce.
View Article and Find Full Text PDFAn operationally simple protocol for the conversion of geranyl acetate to 8-hydroxygeraniol is reported. The convenient two-step procedure relies on an efficient, chemo- and regioselective SeO-promoted oxidation, followed by straightforward deacetylation. This facile means to prepare 8-hydroxygeraniol is expected to enable biosynthetic studies pertaining to thousands of monoterpene indole alkaloids.
View Article and Find Full Text PDFMonoterpene indole alkaloids (MIAs) represent a structurally diverse, medicinally essential class of plant derived natural products. The universal MIA building block strictosidine was recently produced in the yeast Saccharomyces cerevisiae, setting the stage for optimization of microbial production. However, the irreversible reduction of pathway intermediates by yeast enzymes results in a non-recoverable loss of carbon, which has a strong negative impact on metabolic flux.
View Article and Find Full Text PDFHydroalkoxylation is a powerful and efficient method of forming C-O bonds and cyclic ethers in synthetic chemistry. In studying the biosynthesis of the fungal natural product herqueinone, we identified an enzyme that can perform an intramolecular enantioselective hydroalkoxylation reaction. PhnH catalyzes the addition of a phenol to the terminal olefin of a reverse prenyl group to give a dihydrobenzofuran product.
View Article and Find Full Text PDFWe report the first 1,3-dipolar cycloadditions of 1,2-cyclohexadiene, a rarely exploited strained allene. 1,2-Cyclohexadiene is generated in situ under mild conditions and trapped with nitrones to give isoxazolidine products in synthetically useful yields. The reactions occur regioselectively and exhibit a notable endo preference, thus resulting in the controlled formation of two new bonds and two stereogenic centers.
View Article and Find Full Text PDF