Researchers who work on course-based undergraduate research experiences (CUREs) and issues related to science, technology, engineering, and math (STEM) retention have begun exploring changes in student thinking about what it means to be a scientist. To support this effort, we developed rubrics to score answers to three open-response prompts: What does it mean to think like a scientist? What does it mean to do science? and Did you do real research in your labs? The rubric development process was iterative and was based on input from the literature, experienced researchers, and early-career undergraduates. A analysis showed that the rubric elements map to 27 of 31 statements in the Culture of Scientific Research (CSR) framework, suggesting that scored responses to the three prompts can assess how well students understand what being a science professional entails.
View Article and Find Full Text PDFWe developed labs on the evolution of antibiotic resistance to assess the costs and benefits of replacing traditional laboratory exercises in an introductory biology course for majors with a course-based undergraduate research experience (CURE). To assess whether participating in the CURE imposed a cost in terms of exam performance, we implemented a quasi-experiment in which four lab sections in the same term of the same course did the CURE labs, while all other students did traditional labs. To assess whether participating in the CURE impacted other aspects of student learning, we implemented a second quasi-experiment in which all students either did traditional labs over a two-quarter sequence or did CURE labs over a two-quarter sequence.
View Article and Find Full Text PDFResearchers have called for undergraduate courses to update teaching frameworks based on the Modern Synthesis with insights from molecular biology, by stressing the molecular underpinnings of variation and adaptation. To support this goal, we developed a modified version of the widely used Assessing Conceptual Reasoning of Natural Selection (ACORNS) instrument. The expanded tool, called the E-ACORNS, is explicitly designed to test student understanding of the connections among genotypes, phenotypes, and fitness.
View Article and Find Full Text PDFBackground: HIV-1 Nef protein contributes to pathogenesis via multiple functions that include enhancement of viral replication and infectivity, alteration of intracellular trafficking, and modulation of cellular signaling pathways. Nef stimulates formation of tunneling nanotubes and virological synapses, and is transferred to bystander cells via these intercellular contacts and secreted microvesicles. Nef associates with and activates Pak2, a kinase that regulates T-cell signaling and actin cytoskeleton dynamics, but how Nef promotes nanotube formation is unknown.
View Article and Find Full Text PDFBackground: The HIV-1 accessory protein Nef is an important determinant of lentiviral pathogenicity that contributes to disease progression by enhancing viral replication and other poorly understood mechanisms. Nef mediates diverse functions including downmodulation of cell surface CD4 and MHC Class I, enhancement of viral infectivity, and enhancement of T cell activation. Nef interacts with a multiprotein signaling complex that includes Src family kinases, Vav1, CDC42, and activated PAK2 (p21-activated kinase 2).
View Article and Find Full Text PDFAIDS Res Hum Retroviruses
April 2010
Human immunodeficiency virus type 1 (HIV) infection of the central nervous system frequently causes HIV-associated neurocognitive disorders (HAND). The role of HIV Nef and other accessory proteins in HAND pathogenesis is unclear. To determine whether HIV nef undergoes adaptive selection in brain, we cloned 100 nef sequences (n = 30 brain and n = 70 lymphoid) from four patients with AIDS and HIV-associated dementia (HAD).
View Article and Find Full Text PDF