Publications by authors named "Joy Norris"

The most common cause of human congenital disorders of glycosylation (CDG) are mutations in the phosphomannomutase gene which affect protein -linked glycosylation. The yeast gene encodes a homolog of human . We evolved 384 populations of yeast harboring one of two human-disease-associated alleles, V238M and -F126L, or wild-type .

View Article and Find Full Text PDF

Intellectual disability (ID) is a heterogeneous clinical entity and includes an excess of males who harbor variants on the X-chromosome (XLID). We report rare FAM50A missense variants in the original Armfield XLID syndrome family localized in Xq28 and four additional unrelated males with overlapping features. Our fam50a knockout (KO) zebrafish model exhibits abnormal neurogenesis and craniofacial patterning, and in vivo complementation assays indicate that the patient-derived variants are hypomorphic.

View Article and Find Full Text PDF

Mucolipidosis II (ML-II) is a lysosomal disease caused by defects in the carbohydrate-dependent sorting of soluble hydrolases to lysosomes. Altered growth factor signaling has been identified as a contributor to the phenotypes associated with ML-II and other lysosomal disorders but an understanding of how these signaling pathways are affected is still emerging. Here, we investigated transforming growth factor beta 1 (TGFβ1) signaling in the context of ML-II patient fibroblasts, observing decreased TGFβ1 signaling that was accompanied by impaired TGFβ1-dependent wound closure.

View Article and Find Full Text PDF

Snyder-Robinson syndrome (SRS) is an X-linked syndromic intellectual disability condition caused by variants in the spermine synthase gene (SMS). The syndrome is characterized by facial dysmorphism, thin body build, kyphoscoliosis, osteoporosis, hypotonia, developmental delay and associated neurological features (seizures, unsteady gait, abnormal speech). Until now, only missense variants with a functionally characterized partial loss of function (LoF) have been described.

View Article and Find Full Text PDF

Vacuolar H+-ATPase-dependent (V-ATPase-dependent) functions are critical for neural proteostasis and are involved in neurodegeneration and brain tumorigenesis. We identified a patient with fulminant neurodegeneration of the developing brain carrying a de novo splice site variant in ATP6AP2 encoding an accessory protein of the V-ATPase. Functional studies of induced pluripotent stem cell-derived (iPSC-derived) neurons from this patient revealed reduced spontaneous activity and severe deficiency in lysosomal acidification and protein degradation leading to neuronal cell death.

View Article and Find Full Text PDF

Neural tube defects (NTDs) remain one of the most serious birth defects, and although genes in several pathways have been implicated as risk factors for neural tube defects via knockout mouse models, very few molecular causes in humans have been identified. Whole exome sequencing identified deleterious variants in key apoptotic genes in two families with recurrent neural tube defects. Functional studies in fibroblasts indicate that these variants are loss-of-function, as apoptosis is significantly reduced.

View Article and Find Full Text PDF

Missense mutations in spermine synthase (SpmSyn) protein have been shown to cause the Snyder-Robinson syndrome (SRS). Depending on the location within the structure of SpmSyn and type of amino acid substitution, different mechanisms resulting in SRS were proposed. Here we focus on naturally occurring amino acid substitutions causing SRS, which are situated away from the active center of SpmSyn and thus are not directly involved in the catalysis.

View Article and Find Full Text PDF

Background: Snyder-Robinson Syndrome (SRS) is an X-linked intellectual disability disorder also characterized by osteoporosis, scoliosis, and dysmorphic facial features. It is caused by mutations in SMS, a ubiquitously expressed gene encoding the polyamine biosynthetic enzyme spermine synthase. We hypothesized that the tissue specificity of SRS arises from differential sensitivity to spermidine toxicity or spermine deficiency.

View Article and Find Full Text PDF

Snyder-Robinson syndrome is a rare form of X-linked intellectual disability caused by mutations in the spermine synthase (SMS) gene, and characterized by intellectual disability, thin habitus with diminished muscle mass, osteoporosis, kyphoscoliosis, facial dysmorphism (asymmetry, full lower lip), long great toes, and nasal or dysarthric speech. Physical signs seem to evolve from childhood to adulthood. We describe the first Italian patient with Snyder-Robinson syndrome and a novel nonsense mutation in SMS (c.

View Article and Find Full Text PDF

Snyder-Robinson syndrome (SRS, OMIM: 309583) is an X-linked intellectual disability (XLID) syndrome, characterized by a collection of clinical features including facial asymmetry, marfanoid habitus, hypertonia, osteoporosis and unsteady gait. It is caused by a significant decrease or loss of spermine synthase (SMS) activity. Here, we report a new missense mutation, p.

View Article and Find Full Text PDF

Background: Spermine synthase (SMS) is a key enzyme controlling the concentration of spermidine and spermine in the cell. The importance of SMS is manifested by the fact that single missense mutations were found to cause Snyder-Robinson Syndrome (SRS). At the same time, currently there are no non-synonymous single nucleoside polymorphisms, nsSNPs (harmless mutations), found in SMS, which may imply that the SMS does not tolerate amino acid substitutions, i.

View Article and Find Full Text PDF

Background: Snyder-Robinson syndrome is an X-linked genetic disorder characterized by intellectual disability, facial asymmetry, thickened lower lip, long hands with hyper extendable fingers, slow speech, and hyposcoliosis. The disorder is caused by a mutation in the spermine synthase (SMS) gene. The SMS gene encodes an enzyme involved in polyamine metabolism.

View Article and Find Full Text PDF

We have studied a family with severe mental retardation characterized by the virtual absence of speech, autism spectrum disorder, epilepsy, late-onset ataxia, weakness and dystonia. Post-mortem examination of two males revealed widespread neuronal loss, with the most striking finding being neuronal and glial tau deposition in a pattern reminiscent of corticobasal degeneration. Electron microscopic examination of isolated tau filaments demonstrated paired helical filaments and ribbon-like structures.

View Article and Find Full Text PDF