Publications by authors named "Joy Lin"

Aldehyde dehydrogenases are versatile enzymes that serve a range of biochemical functions. Although traditionally considered metabolic housekeeping enzymes because of their ability to detoxify reactive aldehydes, like those generated from lipid peroxidation damage, the contributions of these enzymes to other biological processes are widespread. For example, the plant pathogen strain DC3000 uses an indole-3-acetaldehyde dehydrogenase to synthesize the phytohormone indole-3-acetic acid to elude host responses.

View Article and Find Full Text PDF

Background: Posttraumatic stress disorder (PTSD) is associated with increased risk for morbidity and mortality, which may be mediated through elevated inflammation. In contrast, social support appears to protect against morbidity and mortality, reduce levels of inflammation, and improve PTSD outcomes.

Methods: We examined relationships among social isolation, perceived social support, and inflammation in Veterans Affairs (VA) patients with and without PTSD.

View Article and Find Full Text PDF

MoS nanoribbons with armchair-terminated edges are semiconductors suitable for the tuning of electronic and magnetic properties. Our first-principles density function calculations reveal that a variety of transition-metal atomic chains deposited on some of the ribbons is able to transform the semiconductors into half metals, allowing transport of 100% spin-polarized currents. Furthermore, we found that a Si atomic chain is equally capable of achieving half metallicity when adsorbed on the same nanoribbon.

View Article and Find Full Text PDF

Depression and anxiety have been linked to elevated inflammation in cross-sectional and longitudinal studies. Yet, in terms of longitudinal studies, findings are inconsistent regarding whether depression predicts worsening inflammation or vice versa, and anxiety has been infrequently examined. Further, we know little about longitudinal relationships between inflammation and specific symptom profiles of depression and anxiety.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) has single-digit 5-year survival rates at <7%. There is a dire need to improve pre-malignant detection methods and identify new therapeutic targets for abrogating PDAC progression. To this end, we mined our previously published pseudopodium-enriched (PDE) protein/phosphoprotein datasets to identify novel PDAC-specific biomarkers and/or therapeutic targets.

View Article and Find Full Text PDF

Mounting evidence highlights specific forms of psychological stress as risk factors for ill health. Particularly strong evidence indicates that childhood adversity and adulthood trauma exposure increase risk for physical and psychiatric disorders, and there is emerging evidence that inflammation may play a key role in these relationships. In a population-based sample from the Health and Retirement Study (n=11,198, mean age 69 ± 10), we examine whether childhood adversity, adulthood trauma, and the interaction between them are associated with elevated levels of the systemic inflammatory marker high sensitivity C-reactive protein (hsCRP).

View Article and Find Full Text PDF

Postoperative nausea (PON) is a common complication, and therefore, it is important to identify the associated genetic factors and the candidate predictive markers. Current clinical and basic research suggests that the 5-hydroxytryptamine type 3A receptor (HTR3A) may be important in the occurrence of PON. The association between three single nucleotide polymorphisms (SNPs) of the HTR3A gene and PON was examined to determine whether this can be used to predict the incidence of PON in a unique Taiwanese population without any reported postoperative nausea and vomiting (PONV) risk factors associated with PON occurrence.

View Article and Find Full Text PDF

While p53 activation has long been studied, the mechanisms by which its targets genes are restored to their preactivation state are less clear. We report here that TAF1 phosphorylates p53 at Thr55, leading to dissociation of p53 from the p21 promoter and inactivation of transcription late in the DNA damage response. We further show that cellular ATP level might act as a molecular switch for Thr55 phosphorylation on the p21 promoter, indicating that TAF1 is a cellular ATP sensor.

View Article and Find Full Text PDF

Peripheral artery disease (PAD) currently affects approximately 27 million patients in Europe and North America, and if untreated, may progress to the stage of critical limb ischemia (CLI), which has implications for amputation and potential mortality. Unfortunately, few therapies exist for treating the ischemic skeletal muscle in these conditions. Biomaterials have been used to increase cell transplant survival as well as deliver growth factors to treat limb ischemia; however, existing materials do not mimic the native skeletal muscle microenvironment they are intended to treat.

View Article and Find Full Text PDF

Profound chromatin changes occur during mitosis to allow for gene silencing and chromosome segregation followed by reactivation of memorized transcription states in daughter cells. Using genome-wide sequencing, we found H2A.Z-containing +1 nucleosomes of active genes shift upstream to occupy TSSs during mitosis, significantly reducing nucleosome-depleted regions.

View Article and Find Full Text PDF

Proper DNA methylation patterns are essential for mammalian development and differentiation. DNA methyltransferases (DNMTs) primarily establish and maintain global DNA methylation patterns; however, the molecular mechanisms for the generation and inheritance of methylation patterns are still poorly understood. We used sucrose density gradients of nucleosomes prepared by partial and maximum micrococcal nuclease digestion, coupled with Western blot analysis to probe for the interactions between DNMTs and native nucleosomes.

View Article and Find Full Text PDF

Epigenetic reprogramming is commonly observed in cancer, and is hypothesized to involve multiple mechanisms, including DNA methylation and Polycomb repressive complexes (PRCs). Here we devise a new experimental and analytical strategy using customized high-density tiling arrays to investigate coordinated patterns of gene expression, DNA methylation, and Polycomb marks which differentiate prostate cancer cells from their normal counterparts. Three major changes in the epigenomic landscape distinguish the two cell types.

View Article and Find Full Text PDF

Epigenetic silencing of tumor suppressor genes is generally thought to involve DNA cytosine methylation, covalent modifications of histones, and chromatin compaction. Here, we show that silencing of the three transcription start sites in the bidirectional MLH1 promoter CpG island in cancer cells involves distinct changes in nucleosomal occupancy. Three nucleosomes, almost completely absent from the start sites in normal cells, are present on the methylated and silenced promoter, suggesting that epigenetic silencing may be accomplished by the stable placement of nucleosomes into previously vacant positions.

View Article and Find Full Text PDF

Almost 1-2% of the human genome is located within 500 bp of either side of a transcription initiation site, whereas a far larger proportion (approximately 25%) is potentially transcribable by elongating RNA polymerases. This observation raises the question of how the genome is packaged into chromatin to allow start sites to be recognized by the regulatory machinery at the same time as transcription initiation, but not elongation, is blocked in the 25% of intragenic DNA. We developed a chromatin scanning technique called ChAP, coupling the chromatin immunoprecipitation assay with arbitrarily primed PCR, which allows for the rapid and unbiased comparison of histone modification patterns within the eukaryotic nucleus.

View Article and Find Full Text PDF

Epigenetic modifications of cytosine residues in DNA and the amino termini of histone proteins have emerged as key mechanisms in chromatin remodeling, impacting both the transcriptional regulation and the establishment of chromosomal domains. Using the chromatin immunoprecipitation (ChIP) assay, we demonstrate that aberrantly silenced genes in cancer cells exhibit a heterochromatic structure that is characterized by histone H3 lysine 9 (H3-K9) hypermethylation and histone H3 lysine 4 (H3-K4) hypomethylation. This aberrant heterochromatin is incompatible with transcriptional initiation but does not inhibit elongation by RNA polymerase II.

View Article and Find Full Text PDF