Objective: Recombinant human leptin (metreleptin) improves glycaemia and hypertriglyceridaemia in patients with generalized lipodystrophy; antibody development with in vitro neutralizing activity has been reported. We aimed to characterize antimetreleptin antibody development, including in vitro neutralizing activity.
Design: Two randomized controlled studies in patients with obesity (twice-daily metreleptin ± pramlintide for 20-52 weeks; 2006-2009); two long-term, open-label studies in patients with lipodystrophy (once-daily or twice-daily metreleptin for 2 months to 12·3 years; 2000-2014).
We have previously shown that combined amylin + leptin agonism elicits synergistic weight loss in diet-induced obese (DIO) rats. Here, we assessed the comparative efficacy of amylin, leptin, or amylin + leptin in the maintenance of amylin + leptin-mediated weight loss. DIO rats pretreated with the combination of rat amylin (50 microg/kg/day) and murine leptin (125 microg/kg/day) for 4 weeks were subsequently infused with either vehicle, amylin, leptin, or amylin + leptin for an additional 4 weeks.
View Article and Find Full Text PDFThe neurohormonal control of body weight involves a complex interplay between long-term adiposity signals (e.g., leptin), and short-term satiation signals (e.
View Article and Find Full Text PDFPreviously, we reported that combination treatment with rat amylin (100 microg/kg.d) and murine leptin (500 microg/kg.d) elicited greater inhibition of food intake and greater body weight loss in diet-induced obese rats than predicted by the sum of the monotherapy conditions, a finding consistent with amylin-induced restoration of leptin responsiveness.
View Article and Find Full Text PDFBody weight is regulated by complex neurohormonal interactions between endocrine signals of long-term adiposity (e.g., leptin, a hypothalamic signal) and short-term satiety (e.
View Article and Find Full Text PDFFour patients with inoperable hepatocellular carcinoma were treated with a magnetic targeted carrier bound to doxorubicin (MTC-DOX) by using a joint magnetic resonance (MR) imaging/conventional angiography system consisting of a 1.5-T short-bore magnet connected to a C-arm angiography unit by a sliding tabletop. Selective transcatheter delivery of the MTC-DOX to the hepatic artery was monitored by using intraprocedural MR imaging, and interim catheter manipulation was performed with fluoroscopic guidance to optimize agent delivery to the tumor and minimize delivery to normal tissue.
View Article and Find Full Text PDF