Publications by authors named "Jovi Tze Wai Kan"

Time-resolved spectroscopic experiments were performed to investigate the kinetics and mechanisms of the photodeprotection reactions for p-methoxyphenacyl (pMP) compounds, p-methoxyphenacyl diethyl phosphate (MPEP) and diphenyl phosphate (MPPP). The experimental results reveal that compared to the previous reports for the counterpart p-hydroxyphenacyl (pHP) phosphates, the (3)npi*/pipi* mixed character triplet of pMP acts as a reactive precursor that leads to the subsequent solvent and leaving group dependent chemical reactions and further affects the formation of photoproducts. The MPPP triplet in H(2)O/CH(3)CN and in fluorinated alcohols shows a rapid heterolytic cleavage (tau approximately 5.

View Article and Find Full Text PDF

The kinetics and mechanism of the photodeprotection and rearrangement reactions for the pHP phototrigger compounds p-hydroxyphenacyl diethyl phosphate (HPDP) and diphenyl phosphate (HPPP) were studied using transient absorption (TA) and picosecond time-resolved resonance Raman (ps-TR(3)) spectroscopy. TA spectroscopy was employed to detect the dynamics of the triplet precursor decay as well as to investigate the influence of the solvent and leaving group on the triplet quenching process. Ps-TR(3) spectroscopy was used to directly monitor the formation dynamics for the photosolvolytic rearrangement product and its solvent and leaving group dependence.

View Article and Find Full Text PDF

A combined femtosecond Kerr gated time-resolved fluorescence (fs-KTRF) and picosecond Kerr gated time-resolved resonance Raman (ps-KTR(3)) study is reported for two p-hydroxyphenacyl (pHP) caged phototriggers, HPDP and HPA, in neat acetonitrile and water/acetonitrile (1:1 by volume) solvents. Fs-KTRF spectroscopy was employed to characterize the spectral properties and dynamics of the singlet excited states, and the ps-KTR(3) was used to monitor the formation and subsequent reaction of triplet state. These results provide important evidence for elucidation of the initial steps for the pHP deprotection mechanism.

View Article and Find Full Text PDF

Pico- and nanosecond time-resolved resonance Raman (TR3) spectroscopy have been utilized to study the dynamics and structure of p-hydroxyacetophenone (HA) and the p-hydroxyphenacyl-caged phototrigger compound p-hydroxyphenacyl diethyl phosphate (HPDP) in acetonitrile solution. Transient intermediates were detected and attributed to the triplet states of HA and HPDP. Nanosecond-TR3 measurements were done for two isotopically substituted HA molecules to help better assign the triplet state carbonyl C=O stretching and the ring related vibrational modes.

View Article and Find Full Text PDF