A priori estimation of analyte response is crucial for the efficient development of liquid chromatography-electrospray ionization/mass spectrometry (LC-ESI/MS) methods, but remains a demanding task given the lack of knowledge about the factors affecting the experimental outcome. In this research, we address the challenge of discovering the interactive relationship between signal response and structural properties, method parameters and solvent-related descriptors throughout an approach featuring quantitative structure-property relationship (QSPR) and design of experiments (DoE). To systematically investigate the experimental domain within which QSPR prediction should be undertaken, we varied LC and instrumental factors according to the Box-Behnken DoE scheme.
View Article and Find Full Text PDFAn alternative to the time-consuming and error-prone pharmacopoeial gas chromatography method for the analysis of fatty acids (FAs) is urgently needed. The objective was therefore to propose a robust liquid chromatography method with charged aerosol detection for the analysis of polysorbate 80 (PS80) and magnesium stearate. FAs with different numbers of carbon atoms in the chain necessitated the use of a gradient method with a Hypersil Gold C column and acetonitrile as organic modifier.
View Article and Find Full Text PDFResolving complex sample mixtures by liquid chromatography in a single run is challenging. The so-called mixed-mode liquid chromatography (MMLC) which combines several retention mechanisms within a single column, can provide resource-efficient separation of solutes of diverse nature. The Acclaim Mixed-Mode WCX-1 column, encompassing hydrophobic and weak cation exchange interactions, was employed for the analysis of small drug molecules.
View Article and Find Full Text PDFThe charged aerosol detector (CAD) is the latest representative of aerosol-based detectors that generate a response independent of the analytes' chemical structure. This study was aimed at accurately predicting the CAD response of homologous fatty acids under varying experimental conditions. Fatty acids from C12 to C18 were used as model substances due to semivolatile characterics that caused non-uniform CAD behaviour.
View Article and Find Full Text PDFJ Chromatogr A
September 2020
Numerous structurally different amides and imides including succinimide derivatives exhibit diverse bioactive potential. The development of new compounds requires rationalization in the design in order to provide structural changes that guarantee favorable physico-chemical properties, pharmacological activity and safety. In the present research, a comprehensive study with comparison of the chromatographic lipophilicity and other physico-chemical properties of five groups of 1-arylsuccinimide derivatives was conducted.
View Article and Find Full Text PDFIn micellar liquid chromatography (MLC), the addition of a surfactant to the mobile phase in excess is accompanied by an alteration of its solubilising capacity and a change in the stationary phase's properties. As an implication, the prediction of the analytes' retention in MLC mode becomes a challenging task. Mixed Quantitative Structure - Retention Relationships (QSRR) modelling represents a powerful tool for estimating the analytes' retention.
View Article and Find Full Text PDFIn this study, a quantitative structure-property relationship model was built in order to link molecular descriptors and chromatographic parameters as inputs towards CAD responsiveness. Aminoglycoside antibiotics, sugars, and acetylated amino sugars, which all lack a UV/vis chromophore, were selected as model substances due to their polar nature that represents a challenge in generating a CAD response. Acetone, PFPA, flow rate, data rate, filter constant, SM5_B(s), ATS7s, SpMin1_Bh(v), Mor09e, Mor22e, E1u, R7v+, and VP as the most influential inputs were correlated with the CAD response by virtue of ANN applying a backpropagation learning rule.
View Article and Find Full Text PDFMulticriteria optimization methodology was applied in development of UHPLC-UV-MS method for separation of cilazapril, hydrochlorothiazide and their degradation products. This method is also applicable for analysis of cilazapril, hydrochlorothiazide and their degradation products in combined tablet formulation. Prior to method optimization forced degradation studies were conducted.
View Article and Find Full Text PDF