Publications by authors named "Jovana Aleksic"

Article Synopsis
  • Functionalized 2-pyridones are key compounds used in biology and as building blocks in synthetic chemistry.
  • The study describes an eco-friendly, solid-state method for synthesizing various 2-pyridones using simple materials like amines and alkynes, without the need for solvents.
  • The process is efficient, requiring minimal energy consumption, generates only ethanol as a by-product, and results in the formation of useful polyfunctionalized conjugated dienes.
View Article and Find Full Text PDF

Computational investigation at the BHandHLYP/6-311+G(d,p) level of theory of the gas-phase tautomerism of 2- and 4-pyridones confirmed the slight prevalence of lactim in the case of the former, but its dominance in the case of the latter, as shown previously. Examination of aromaticity by using HOMA, EDDB, NBOdel, NICS and AICD led to the conclusion that tautomerization of 4-pyridone results in greater aromaticity gain. It is also driven by the Pauli repulsion relief, which was revealed by the tautomerization energy decomposition analysis.

View Article and Find Full Text PDF

We present the green, highly atom-economical, solid-state silica gel-catalyzed synthesis of polysubstituted 1,4- and 1,2-dihydropyridines (DHPs) from commercially available materials, amines and ethyl propiolate. The DHP skeleton was assembled by heating the reactants and silica gel in a closed vessel. Aliphatic amines provided 1,4-isomers as the main or only DHP products, but the reactions of aromatic amines yielded a mixture of 1,4- and 1,2-isomers.

View Article and Find Full Text PDF

Background: Colon cancer is often driven by mutations of the adenomatous polyposis coli (APC) gene, an essential tumor suppressor gene of the Wnt β-catenin signaling pathway. APC and its cytoplasmic interactions have been well studied. However, various groups have also observed its presence in the nucleus.

View Article and Find Full Text PDF

Objective: Identify protein contact points between TP53 and minichromosome maintenance (MCM) complex proteins 2, 3, and 5 with high resolution allowing for potential novel Cancer drug design.

Methods: A next-generation sequencing-based protein-protein interaction method developed in our laboratory called AVA-Seq was applied to a gold-standard human protein interaction set. Proteins including TP53, MCM2, MCM3, MCM5, HSP90AA1, PCNA, NOD1, and others were sheared and ligated into the AVA-Seq system.

View Article and Find Full Text PDF

By employing density functional theory (DFT) calculations we show that mono- and disilicon substitution in polycyclic aromatic hydrocarbons, having two to four benzene units, quenches their triplet state antiaromaticity by creating Hückel aromatic (poly)benzenoid subunit(s) and weakly antiaromatic, or almost nonaromatic silacycle. Therefore, such systems are predicted to be globally aromatic in both the ground state and the first excited triplet state. Putting the silicon atom(s) into various positions of a hydrocarbon provides an opportunity to tune the singlet-triplet energy gaps.

View Article and Find Full Text PDF

Protein-protein interactions (PPIs) are essential in understanding numerous aspects of protein function. Here, we significantly scaled and modified analyses of the recently developed all-vs-all sequencing (AVA-Seq) approach using a gold-standard human protein interaction set (hsPRS-v2) containing 98 proteins. Binary interaction analyses recovered 20 of 47 (43%) binary PPIs from this positive reference set (PRS), comparing favorably with other methods.

View Article and Find Full Text PDF

We present an efficient, simple, metal- and solvent-free silica-gel-promoted synthesis of functionalized conjugated dienes by sequential aza-Michael/Michael reactions by starting from commercially available primary amines and propiolic esters. The scope and usefulness of the method is demonstrated for 31 examples, including a range of propiolic esters, aliphatic amines, and differently substituted aromatic amines. For aliphatic amines, the products were obtained within 0.

View Article and Find Full Text PDF

The well-known gauche preference in FCCX systems, where X is an electronegative element from Period 2, is widely exploited in synthetic, medicinal, and material chemistry. It is rationalized on the basis of σ(C-H) → σ*(C-F) hyperconjugation and electrostatic interactions. The recent report (Thiehoff, C.

View Article and Find Full Text PDF