Publications by authors named "Jovan Pavlovic"

Mx proteins are interferon (IFN) type I (α/β)- and type III (λ)-induced effector proteins with intrinsic antiviral activity. Mammalian Mx proteins show different subcellular localizations and distinct yet partially overlapping viral specificities. However, the precise mechanism(s) of antiviral action are still unresolved.

View Article and Find Full Text PDF

The discovery of the Mx gene-dependent, innate resistance of mice against influenza virus was a matter of pure chance. Although the subsequent analysis of this antiviral resistance was guided by straightforward logic, it nevertheless led us into many blind alleys and was full of surprising turns and twists. Unexpectedly, this research resulted in the identification of one of the first interferon-stimulated genes and provided a new view of interferon action.

View Article and Find Full Text PDF

The type I interferon (IFN) system plays an important role in controlling herpesvirus infections, but it is unclear which IFN-mediated effectors interfere with herpesvirus replication. Here we report that human myxovirus resistance protein B (MxB, also designated Mx2) is a potent human herpesvirus restriction factor in the context of IFN. We demonstrate that ectopic MxB expression restricts a range of herpesviruses from the Alphaherpesvirinae and Gammaherpesvirinae, including herpes simplex virus 1 and 2 (HSV-1 and HSV-2), and Kaposi's sarcoma-associated herpesvirus (KSHV).

View Article and Find Full Text PDF

The formation of oligomeric complexes is a crucial prerequisite for the proper structure and function of many proteins. The interferon-induced antiviral effector protein MxA exerts a broad antiviral activity against many viruses. MxA is a dynamin-like GTPase and has the capacity to form oligomeric structures of higher order.

View Article and Find Full Text PDF

Background: Mucosal HIV-1 transmission predominantly results in a single transmitted/founder (T/F) virus establishing infection in the new host despite the generally high genetic diversity of the transmitter virus population. To what extent HIV-1 transmission is a stochastic process or driven by selective forces that allow T/F viruses best to overcome bottlenecks in transmission has not been conclusively resolved. Building on prior investigations that suggest HIV-1 envelope (Env) features to contribute in the selection process during transmission, we compared phenotypic virus characteristics of nine HIV-1 subtype B transmission pairs, six men who have sex with men and three male-to-female transmission pairs.

View Article and Find Full Text PDF

The IFN-induced human myxovirus resistance protein A (MxA) exhibits a broad antiviral activity against many viruses, including influenza A virus (IAV). MxA belongs to the family of dynamin-like GTPases and assembles in vitro into dimers, tetramers, and oligomeric ring-like structures. The molecular mechanism of action remains to be elucidated.

View Article and Find Full Text PDF

Background: The various classes of small noncoding RNAs (sncRNAs) are important regulators of gene expression across divergent types of organisms. While a rapidly increasing number of sncRNAs has been identified over recent years, the isolation of sncRNAs of low abundance remains challenging. Virally encoded sncRNAs, particularly those of RNA viruses, can be expressed at very low levels.

View Article and Find Full Text PDF

Mx proteins are a family of large GTPases that are induced exclusively by interferon-α/β and have a broad antiviral activity against several viruses, including influenza A virus (IAV). Although the antiviral activities of mouse Mx1 and human MxA have been studied extensively, the molecular mechanism of action remains largely unsolved. Because no direct interaction between Mx proteins and IAV proteins or RNA had been demonstrated so far, we addressed the question of whether Mx protein would interact with cellular proteins required for efficient replication of IAV.

View Article and Find Full Text PDF

The cellular DEAD box RNA helicase UAP56 plays a pivotal role in the efficient transcription/replication of influenza A virus. UAP56 is recruited by the nucleoprotein (NP) of influenza A viruses, and recent data revealed that the RNA helicase is required for the nuclear export of a subset of spliced and unspliced viral mRNAs. The fact that influenza viruses do not produce detectable amounts of double-stranded RNA (dsRNA) intermediates during transcription/replication suggests the involvement of cellular RNA helicases.

View Article and Find Full Text PDF

Influenza A virus causes prevalent respiratory tract infections in humans. Small interfering RNA (siRNA) and antisense oligonucleotides (asODNs) have been used previously for silencing the RNA genome of influenza virus. Here, we explored the use of partially double-stranded oligodeoxynucleotides (dsODNs) to suppress the production of influenza A virus in cell cultures and animal models.

View Article and Find Full Text PDF

AF6 and its rat homologue afadin are multidomain proteins localized at cell junctions and involved in intercellular adhesion. AF6 interacts via its PDZ domain with nectin-1 at epithelial adherens junctions. Nectin-1 serves as a mediator of cell-to-cell spread for Herpes simplex virus 1 (HSV-1).

View Article and Find Full Text PDF

IL-12, the critical factor for the generation of the Th1 type immune response, is produced by dendritic cells (DC) upon stimulation with LPS. Different signal pathways mediate LPS-induced expression of IL-12 and involve PI3K, MAPK and the transcription factor NF-kappaB. Here, we show that the kinase Raf is involved in the expression of IL-12 in human DC stimulated by LPS.

View Article and Find Full Text PDF

Type I interferons (IFNs) are essential components of the innate immune system. This study characterized the distinct IFN sensitivities of two closely related Semliki Forest virus (SFV) strains in cell culture. The virulent L10 strain was derived from the original virus isolate by propagation in mice.

View Article and Find Full Text PDF

Non-structural protein NS1 of influenza A virus counteracts the host immune response by blocking the synthesis of type I interferon (IFN). As deletion of the complete NS1 gene has to date been reported only in the human H1N1 strain A/PR/8/34, it remained unclear whether NS1 is a non-essential virulence factor in other influenza A virus strains as well. In this report, the properties of NS1-deficient mutants derived from strain SC35M (H7N7) are described.

View Article and Find Full Text PDF

Live attenuated measles virus (MV) vaccines have an impressive record of safety, efficacy and ability to induce life-long immunity against measles infection. Using reverse genetics technology, such negative-strand RNA viruses can now be rescued from cloned DNA. This technology allows the insertion of exogenous genes encoding foreign antigens into the MV genome in such a way that they can be expressed by the MV vaccine strain, without affecting virus structure, propagation and cell targeting.

View Article and Find Full Text PDF

Mesenchymal stem cells (MSCs) represent a new tool for delivery of therapeutic agents to tumor cells. In this study, we have evaluated the anti-tumor activity of human MSCs stably transduced with a retroviral vector expressing the cytokine interleukin-12 (IL-12) in a mouse melanoma model. Application of MSC(IL-12) but not control MSCs strongly reduced the formation of lung metastases of B16F10 melanoma cells.

View Article and Find Full Text PDF

The antitumor efficacy of human melanoma-associated antigen (hgp100) and chemokine CCL21 in combination with interleukin-12 (IL-12) was evaluated in a syngeneic melanoma mouse model. The rationale for this approach was based on previous studies showing that the efficacy of IL-12 therapy in melanoma patients correlated with the presence of antibodies against tumor-associated antigens. We have previously shown that application of xenogeneic human gp100 DNA (hgp100 DNA) is protective against mouse B16 melanoma.

View Article and Find Full Text PDF

Background: Ex vivo gene transfer to donor corneas using adenoviral vectors has gained increasing attention. This study investigates the effect of adenovirus-mediated gene transfer on endothelial cell (EC) count in human eye bank corneas.

Methods: A replication-defective adenoviral vector containing the gene for green fluorescent protein was used to transduce organ-cultured normal human eye bank and porcine corneas.

View Article and Find Full Text PDF

Plasmid DNA encoding human interleukin 12 (IL-12) was produced under GMP conditions and injected into lesions of nine patients with malignant melanoma (stage IV) previously treated with both standard and nonstandard therapies. The treatment was based on efficacy in preclinical studies with melanoma in mice and gray horses. The DNA was applied in cycles, three injections per cycle, for up to seven cycles.

View Article and Find Full Text PDF

Targeting of DC for DNA vaccination may be achieved by DNA-loaded poly(lactide-co-glycolide) (PLGA) biodegradable microparticles, since DC efficiently capture these microparticles in vitro and in vivo. DNA was encapsulated in PLGA microparticles by spray-drying. Various additives were tested and process parameters adjusted in order to prevent degradation of the DNA during encapsulation.

View Article and Find Full Text PDF

The neuropathology of Alzheimer's disease(AD) is characterized by the accumulation of amyloid peptide Abeta in the brain derived from proteolytic cleavage of the amyloid precursor protein (APP). Vaccination of mice with plasmid DNA coding for the human Abeta42 peptide together with low doses of preaggregated peptide induced antibodies with detectable titers after only 2 weeks. One serum was directed against the four aminoterminal amino acids DAEF and differs from previously described ones.

View Article and Find Full Text PDF

We report here that the interferon-induced protein of 10 kDa (IP-10 or CXCL10) elicits strong anti-tumor and anti-metastatic responses in mice when administered by plasmid DNA. Intratumoral but not intramuscular IP-10 DNA inoculation resulted in reduced tumor formation of malignant melanoma (B16F10) and Lewis lung carcinoma (LL/2) in C57BL/6 mice. In addition, plasmid DNA-encoding IP-10 substantially reduced the establishment of metastases when injected systemically by the intramuscular route.

View Article and Find Full Text PDF

Hantaan virus, the etiological agent of Korean hemorrhagic fever, is transmitted to humans from persistently infected mice (Apodemus agrarius), which serve as the primary reservoir. Here we demonstrate that several strains of adult Mus musculus domesticus (C57BL/6, BALB/c, AKR/J, and SJL/J) were susceptible to Hantaan virus infection when infected intraperitoneally. First clinical signs were loss of weight, ruffled fur, and reduced activity, which were followed by neurological symptoms, such as paralyses and convulsions.

View Article and Find Full Text PDF

DNA coding for murine interleukin 12 (IL-12) prevents the formation of B16-melanoma metastasis when administered intramuscularly. Here, the antitumor effect of IL-12-encoding DNA on established mouse B16 melanoma and human melanoma tumors was investigated in vivo using two animal models: B16 melanoma in C57B/6 mice and human melanoma in nude mice. In B16 melanoma, intratumoral injections of IL-12-encoding DNA resulted in highly significant growth retardation when compared with mice injected with control vector.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: