Background: This study aimed to produce Odontoglossum ringspot virus (ORSV)-free Cymbidium orchid 'New True' plants from ORSV-infected mother plants by culturing their meristems and successively repeating subcultures of protocorm-like bodies (PLBs) derived from the meristems.
Results: Initially, ORSV was confirmed as the causative agent of viral symptoms in orchid leaves via reverse transcription-polymerase chain reaction (RT-PCR) analysis. Meristems from infected plants were cultured to generate PLBs, which in sequence were repeatedly subcultured up to four times.
To investigate the role of ethylene (ET) in abiotic stress tolerance in petunia cv. 'Mirage Rose', petunia plants in which the ET biosynthesis gene 1-aminocyclopropane-1-carboxylic acid oxidase 4 (ACO4) was knocked out (phaco4 mutants) and wild-type (WT) plants were exposed to heat and drought conditions. Loss of function of ACO4 significantly delayed leaf senescence and chlorosis under heat and drought stress by maintaining the SPAD values and the relative water content, indicating a greater stress tolerance of phaco4 mutants than that of WT plants.
View Article and Find Full Text PDFThe role of , which encodes the 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase enzyme, in extending flower longevity and improving tolerance to cadmium (Cd) stress was assessed using transgenic cv. 'Mirage Rose' overexpressing and wild-type (WT) plants. The overexpression of reduced ethylene production in floral tissue via suppression of ethylene-related genes and improved flower longevity, approximately 2 to 4 days longer than WT flowers.
View Article and Find Full Text PDFOverexpression of acdS in petunia negatively affects seed germination by suppression of ethylene biosynthesis and signaling genes and induction of abscisic acid biosynthesis genes in the seeds. The acdS gene, which encodes 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, has been overexpressed in horticultural crops to improve their tolerance to abiotic stress. However, the role of acdS in the germination of crop seeds has not been investigated, despite its suppression of ethylene production.
View Article and Find Full Text PDFEthylene plays a critical signaling role in the abiotic stress tolerance mechanism. However, the role of ethylene in regulating abiotic stress tolerance in petunia has not been well-investigated, and the underlying molecular mechanism by which ethylene regulates abiotic stress tolerance is still unknown. Therefore, we examined the involvement of ethylene in salt and drought stress tolerance of petunia using the petunia wild type cv.
View Article and Find Full Text PDF