Proc Natl Acad Sci U S A
November 2024
Mitochondrial biogenesis relies on both the nuclear and mitochondrial genomes, and imbalance in their expression can lead to inborn errors of metabolism, inflammation, and aging. Here, we investigate N6AMT1, a nucleo-cytosolic methyltransferase that exhibits genetic codependency with mitochondria. We determine transcriptional and translational profiles of and report that it is required for the cytosolic translation of TRMT10C (MRPP1) and PRORP (MRPP3), two subunits of the mitochondrial RNAse P enzyme.
View Article and Find Full Text PDFMitochondrial double-stranded RNA (dsRNA) can form spontaneously in mitochondria, blocking mitochondrial gene expression and triggering an immune response. A recent study by Kim, Tan, et al. identified a safeguard mechanism in which NOP2/Sun RNA methyltransferase 4 (NSUN4)-mediated RNA methylation (mC) recruits the RNA degradation machinery to prevent dsRNA formation.
View Article and Find Full Text PDFSlow-release fertilizers (SRFs) form the core of innovative strategies in sustainable agriculture. Layered Double Hydroxides (LDH), known for their high capacity to sequester plant nutrients, especially phosphate, are emerging as promising candidates for SRF synthesis. The phosphate release properties of MgAl LDH (with a targeted Mg/Al ratio of 2.
View Article and Find Full Text PDFFrom our daily nutrition and synthesis within cells, nucleosides enter the bloodstream and circulate throughout the body and tissues. Nucleosides and nucleotides are classically viewed as precursors of nucleic acids, but recently they have emerged as a novel energy source for central carbon metabolism. Through catabolism by nucleoside phosphorylases, the ribose sugar group is released and can provide substrates for lower steps in glycolysis.
View Article and Find Full Text PDFThe electron transport chain (ETC) of mitochondria, bacteria, and archaea couples electron flow to proton pumping and is adapted to diverse oxygen environments. Remarkably, in mice, neurological disease due to ETC complex I dysfunction is rescued by hypoxia through unknown mechanisms. Here, we show that hypoxia rescue and hyperoxia sensitivity of complex I deficiency are evolutionarily conserved to C.
View Article and Find Full Text PDFFor our special issue on stress, we asked scientists about recovering from the stress of the pandemic, including some who shared insights with us in mid-2020. They discuss the importance of teamwork, reassessing priorities, and the added stresses of the cost-of-living crisis, funding cuts, and retaining scientists in academia.
View Article and Find Full Text PDFCongenital diaphragmatic hernia (CDH) is a relatively common and genetically heterogeneous structural birth defect associated with high mortality and morbidity. We describe eight unrelated families with an X-linked condition characterized by diaphragm defects, variable anterior body-wall anomalies, and/or facial dysmorphism. Using linkage analysis and exome or genome sequencing, we found that missense variants in plastin 3 (PLS3), a gene encoding an actin bundling protein, co-segregate with disease in all families.
View Article and Find Full Text PDFThe functions of macrophages are tightly regulated by their metabolic state. However, the role of the mitochondrial electron transport chain (ETC) in macrophage functions remains understudied. Here, we provide evidence that the succinate dehydrogenase (SDH)/complex II (CII) is required for respiration and plays a role in controlling effector responses in macrophages.
View Article and Find Full Text PDFBackground: NTRK gene fusions have been identified in various tumors; some requiring aggressive therapy and sometimes new TRK inhibitors (TRKi). We aimed to describe a national, unselected, retrospective, multicenter cohort.
Research Design And Methods: Patients were identified through the French sarcoma diagnostic laboratory at Institut Curie through samples analyzed by RT-qPCR or whole-transcriptome sequencing.
Most physiological and disease processes, from central metabolism to immune response to neurodegeneration, involve mitochondria. The mitochondrial proteome is composed of more than 1,000 proteins, and the abundance of each can vary dynamically in response to external stimuli or during disease progression. Here, we describe a protocol for isolating high-quality mitochondria from primary cells and tissues.
View Article and Find Full Text PDFGlucose is vital for life, serving as both a source of energy and carbon building block for growth. When glucose is limiting, alternative nutrients must be harnessed. To identify mechanisms by which cells can tolerate complete loss of glucose, we performed nutrient-sensitized genome-wide genetic screens and a PRISM growth assay across 482 cancer cell lines.
View Article and Find Full Text PDFReactivation of Multiple Sclerosis (MS) activity has been described after fingolimod cessation. Because of its contra indication during pregnancy, switch towards lower efficacy treatments are frequent in MS patients with childbearing desire but expose them to a risk of disease reactivation. In this retrospective study including 44 women with MS, a significant increase of the median annualized relapse rate was found in the year following fingolimod discontinuation compared to the period before (p < 0.
View Article and Find Full Text PDFPurpose: LEF1 encodes a transcription factor acting downstream of the WNT-β-catenin signaling pathway. It was recently suspected as a candidate for ectodermal dysplasia in 2 individuals carrying 4q35 microdeletions. We report on 12 individuals harboring LEF1 variants.
View Article and Find Full Text PDFBackground: Since 2015, mechanical thrombectomy (MT) is indicated as a treatment for patients with large vessel occlusion (LVO) at the acute phase of ischemic stroke. However, the number of stroke patients eligible for MT is poorly known.
Objective: The objective of our study was to estimate the number of patients eligible for thrombectomy within the first 24hours of an ischemic stroke, based on the clinical National Institute of Health Stroke Scale (NIHSS).
The MADS transcription factors (TF) are an ancient eukaryotic protein family. In plants, the family is divided into two main lineages. Here, we demonstrate that DNA binding in both lineages absolutely requires a short amino acid sequence C-terminal to the MADS domain (M domain) called the Intervening domain (I domain) that was previously defined only in type II lineage MADS.
View Article and Find Full Text PDFOxidative phosphorylation (OXPHOS) and glycolysis are the two major pathways for ATP production. The reliance on each varies across tissues and cell states, and can influence susceptibility to disease. At present, the full set of molecular mechanisms governing the relative expression and balance of these two pathways is unknown.
View Article and Find Full Text PDF