The frequency-domain (FD) method provides an alternative to the commonly used time-domain (TD) approach in characterizing the luminescence kinetics of luminophores, with its own strengths, e.g., the capability to decouple multiple lifetime components with higher reliability and accuracy.
View Article and Find Full Text PDFLayer-by-layer (LbL) fabricated oxidative multilayers consisting of successive layers of inorganic polyphosphate (PP) and Ce(IV) can electrolessly form thin conducting polymer films on their surface. We describe the effect of substituting every second PP layer in the (PP/Ce) multilayers for graphene oxide (GO) as a means of modifying the structure and mechanical properties of these (GO/Ce/PP/Ce) films and enhancing their growth. Both types of LbL films are based on reversible coordinative bonding between the metal ions and the oxygen-bearing groups in PP and GO, instead of purely electrostatic interactions.
View Article and Find Full Text PDFFluorescent reporters based on lanthanide ions, such as europium chelates, enable highly sensitive detection in immunoassays and other ligand binding assays. Unfortunately they normally require UV-excitation produced by a xenon flash or nitrogen laser light source. In order to use modern solid state excitation sources such as light emitting diodes (LEDs), these reporters need to be excited at wavelengths longer than 365 nm, where high-powered ultraviolet LEDs are available.
View Article and Find Full Text PDFFörster resonance energy-transfer (FRET) is a powerful and widely applied bioanalytical tool. According to the definition of FRET by Förster, for energy-transfer to take place, a substantial spectral overlap between the donor emission and acceptor excitation spectra is required. Recently also a phenomenon termed nonoverlapping FRET (nFRET) has been reported.
View Article and Find Full Text PDFThe sinusoidal modulation of excitation intensity and phase-sensitive detection of emission is ideally suitable for the accurate determination of the lifetime and intensity of lanthanide luminescence. In this work we elaborate on the general mathematical and instrumental techniques of the frequency-domain (FD) measurements in the low-frequency domain below 100 kHz. A modular FD luminometer is constructed by using a UV-LED as the excitation source, proper light filters in the excitation and emission paths, a photomultiplier with a fast preamplifier, and a conventional dual-phase lock-in amplifier.
View Article and Find Full Text PDFUp-converting NaRF(4)-NaR'F(4) (R: Y, Yb, Er) nanomaterials with different core-shell combinations were prepared with the co-precipitation method. The X-ray powder diffraction (XPD) measurements revealed the presence of both the cubic and hexagonal NaRF(4) phases. The crystallite sizes calculated with the Scherrer formula were 100 and 150 nm for the cubic and hexagonal phases, respectively.
View Article and Find Full Text PDFBiomacromolecules
February 2009
Both hyaluronan (HA) and chitosan (CHI) are biocompatible polysaccharide electrolytes. The multilayers formed by these polyelectrolytes alone are known to be rather soft and strongly viscoelastic. In this work we study multilayers formed by incorporating synthetic nonsaccharide polyelectrolytes such as polyallylamine (PAH) and poly(acrylic acid) (PAA) in various proportions into the HA/CHI layers.
View Article and Find Full Text PDFNanocrystalline up-converting phosphors with zirconium oxide (ZrO(2)) as the host lattice were prepared with combustion and sol-gel methods. Impurities were analyzed with Fourier transform infrared (FT-IR) spectroscopy. Yb(3+) absorption was studied in the wave number region 10,000-11,500 cm(-1) at room temperature and at 10 K.
View Article and Find Full Text PDFThe up-converting ZrO2:Yb3+,Er3+ nanomaterials were prepared with the combustion and sol-gel methods. FT-IR spectroscopy was used for analyzing the impurities. The crystal structures were characterized with X-ray powder diffraction and the mean crystallite sizes were estimated with the Scherrer formula.
View Article and Find Full Text PDFThe layer-by-layer buildup of chitosan/hyaluronan (CH/HA) and poly(l-lysine)/hyaluronan (PLL/HA) multilayers was followed on a quartz crystal resonator (QCR) in different ionic strengths and at different temperatures. These polyelectrolytes were chosen to demonstrate the method whereby useful information is retrieved from acoustically thick polymer layers during their buildup. Surface acoustic impedance recorded in these measurements gives a single or double spiral when plotted in the complex plane.
View Article and Find Full Text PDFWe report the efficient aqueous dispersion of pristine HiPco single-walled carbon nanotubes (SWNTs) with ionic liquid (IL)-based surfactants 1-dodecyl-3-methylimidazolium bromide (1) and 1-(12-mercaptododecyl)-3-methylimidazolium bromide (2), the thiolation of nanotube sidewalls with 2, and the controlled self-assembly of positively charged SWNT-1,2 composites on gold. Optical absorption spectra and resonance Raman (RR) data of obtained aqueous SWNT-1,2 dispersions are consistent with debundled and noncovalently functionalized nanotubes whose electronic properties have not been disturbed. Additionally, the dispersion of pristine nanotube material with surfactants 1 and 2 leads to a high degree of purification from carbonaceous particles.
View Article and Find Full Text PDFA novel, experimentally simple, and highly sensitive method for measuring the loading of a quartz crystal resonator was developed. The method is based on the use of double-sideband suppressed-carrier modulated high-frequency signal, which is swept through the resonance range of the resonator. Induced current in the resonator is passed through a capacitor, and the voltage over the capacitor is demodulated on an analog multiplier.
View Article and Find Full Text PDFThe effect of temperature on the buildup of polyelectrolyte multilayers consisting of poly(styrenesulfonate) (PSS), poly(diallyldimethylammonium) (PDADMA), and poly(allylamine) (PAH) was studied by using a quartz crystal microbalance. The increase of temperature in the deposition process was shown to have a considerable effect on the rate of the layer-by-layer buildup. The effect of temperature on the PDADMA/PSS deposition was found to be stronger than on the PAH/PSS deposition.
View Article and Find Full Text PDFThe influence of a variety of counteranions on the properties of polyelectrolyte multilayers deposited by layer-by-layer technique is studied by using ellipsometry and AFM. We found out that in thin dry multilayers (20-90 nm) ofpoly(4-styrenesulfonate) (PSS) and poly(diallyldimethylammonium) (PDADMA), the thickness follows reasonably well the position of the counteranion in the Hofmeister series. The polyelectrolyte-counteranion interaction is studied by means of viscosity measurements of semidilute solutions of PDADMA in the presence of different anions.
View Article and Find Full Text PDFThe apparent negative areal mass densities obtained for a polyelectrolyte multilayer on a quartz crystal resonator in contact with four different perfluorocarbon liquids are explained by the interfacial slippage between the multilayer and the liquids. It is shown that the zone of interfacial slipping can be conveniently treated as a separate layer with distinct physical parameters. Three models of slippage were taken into a closer study.
View Article and Find Full Text PDFThe effect of a polyelectrolyte (PE) multilayers made by a layer-by-layer technique on the response of a quartz crystal microbalance (QCM) is studied by using novel mathematical methods based on the Möbius transformations and their matrix representations in the complex plane. In the first method, the basic properties of the Möbius transformation are used for obtaining the PE bilayer matrix from the QCM impedance measurements taken at four different numbers of layers. In the second method, nonlinear fitting with concomitant error estimation is used for obtaining the elements of the bilayer matrix.
View Article and Find Full Text PDF