1,2-dibromo-4-(1,2-dibromoethyl)-cyclohexane (DBE-DBCH) is a brominated flame retardant used in commercial and industrial applications. The use of DBE-DBCH containing products has resulted in an increased release into the environment. However, limited information is available on the long-term effects of DBE-DBCH and its effects in aquatic invertebrates.
View Article and Find Full Text PDFEndocrine disrupting compounds can interfere with androgen receptor (AR) signaling and disrupt steroidogenesis leading to reproductive failure. The brominated flame-retardant (BFR) 1, 2-dibromo-4-(1, 2-dibromoethyl) cyclohexane (TBECH), is an agonist to human, chicken and zebrafish AR. Recently another group of alternative BFRs, allyl 2, 4, 6-tribromophenyl ether (ATE), and 2, 3-dibromopropyl 2, 4, 6-tribromophenyl ether (DPTE) along with its metabolite 2-bromoallyl 2, 4, 6-tribromophenyl ether (BATE) were identified as potent human AR antagonists.
View Article and Find Full Text PDFPoint mutations in the AR ligand-binding domain (LBD) can result in altered AR structures leading to changes of ligand specificity and functions. AR mutations associated to prostate cancer (PCa) have been shown to result in receptor activation by non-androgenic substances and anti-androgenic drugs. Two AR mutations known to alter the function of anti-androgens are the ART877A mutation, which is frequently detected mutation in PCa tumors and the ARW741C that is rare and has been derived in vitro following exposure of cells to the anti-androgen bicalutamide.
View Article and Find Full Text PDFIncreased exposure of birds to endocrine disrupting compounds has resulted in developmental and reproductive dysfunctions. We have recently identified the flame retardants, allyl-2,4,6-tribromophenyl ether (TBP-AE), 2-3-dibromopropyl-2,4,6-tribromophenyl ether (TBP-DBPE) and the TBP-DBPE metabolite 2-bromoallyl-2,4,6-tribromophenyl ether (TBP-BAE) as antagonists to both the human androgen receptor (AR) and the zebrafish AR. In the present study, we aimed at determining whether these compounds also interact with the chicken AR.
View Article and Find Full Text PDFThe brominated flame retardants (BFRs) 1,2-dibromo-4-(1,2-dibromoethyl)cyclohexane (TBECH or DBE-DCBH) and allyl 2,4,6-tribromophenyl ether (ATE or TBP-AE) are alternative BFRs that have been introduced to replace banned BFRs. TBECH is a potential endocrine disrupter in human, chicken and zebrafish and in a recent study we showed that ATE, along with the structurally similar BFR 2,3-dibromopropyl 2,4,6-tribromophenyl ether (DPTE or TBP-DBPE) and its metabolite 2-bromoallyl 2,4,6-tribromophenyl ether (BATE or TBP-BAE) are potential endocrine and neuronal disrupters in human. In this study we analyzed ATE, BATE and DPTE for zebrafish androgen receptor (zAR) modulating properties.
View Article and Find Full Text PDFBrominated flame-retardants (BFRs) are used in industrial products to reduce the risk of fire. However, their continuous release into the environment is a concern as they are often persistent, bioaccumulating and toxic. Information on the impact these compounds have on human health and wildlife is limited and only a few of them have been identified to disrupt hormone receptor functions.
View Article and Find Full Text PDFThe incorporation of brominated flame retardants into industrial and household appliances has increased their occurrence in the environment, resulting in deleterious effects on wildlife. With the increasing restraints on available compounds, there has been a shift to using brominated flame retardants that has seen the production of alternative brominated flame retardants such as 1,2-dibromo-4-(1,2 dibromoethyl) cyclohexane (TBECH), which has been detected in the environment. In previous in silico and in vitro studies the authors have shown that TBECH can activate both the human androgen receptor (hAR) and the zebrafish AR (zAR) suggesting that it is a potential endocrine disruptor.
View Article and Find Full Text PDFTetrabromoethylcyclohexane (TBECH) is a brominated flame retardant that has been shown to be a potent agonist to the human androgen receptor (AR). However, while it is present in the environment, it is not known if it interacts with AR from aquatic species. The present study was therefore aimed at improving our understanding of how TBECH affects aquatic animals using zebrafish as a model organism.
View Article and Find Full Text PDF