Background: Insects detect odours using odorant receptors (ORs) expressed in olfactory sensory neurons (OSNs) in the antennae. Ecologically important odours are often detected by selective and abundant OSNs; hence, ORs with high antennal expression. However, little is known about the function of highly expressed ORs in beetles, since few ORs have been functionally characterized.
View Article and Find Full Text PDFBackground: Chemoreception is crucial for insect fitness, underlying for instance food-, host-, and mate finding. Chemicals in the environment are detected by receptors from three divergent gene families: odorant receptors (ORs), gustatory receptors (GRs), and ionotropic receptors (IRs). However, how the chemoreceptor gene families evolve in parallel with ecological specializations remains poorly understood, especially in the order Coleoptera.
View Article and Find Full Text PDFThe striped ambrosia beetle (Coleoptera, Curculionidae, Scolytinae) is a major forest pest in the Holarctic region. It uses an aggregation pheromone and host and non-host volatiles to locate suitable host trees, primarily stressed or dying conifer trees. The beetles bore into the xylem and inoculate spores of their obligate fungal mutualist inside their excavated egg galleries, with the fungus serving as the main food source for the developing larvae.
View Article and Find Full Text PDFInsects are able to detect a plethora of olfactory cues using a divergent family of odorant receptors (ORs). Despite the divergent nature of this family, related species frequently express several evolutionarily conserved OR orthologues. In the largest order of insects, Coleoptera, it remains unknown whether OR orthologues have conserved or divergent functions in different species.
View Article and Find Full Text PDFSex pheromones facilitate species-specific sex communication within the Lepidoptera. They are detected by specialised pheromone receptors (PRs), most of which to date fall into a single monophyletic receptor lineage (frequently referred to as "the PR clade") within the odorant receptor (OR) family. Here we investigated PRs of the invasive horticultural pest, Epiphyas postvittana, commonly known as the light brown apple moth.
View Article and Find Full Text PDFInsect odorant receptor (OR) genes are routinely expressed in Human Embryonic Kidney (HEK) 293 cells for functional characterization ("de-orphanization") using transient or stable expression. However, progress in this research field has been hampered because some insect ORs are not functional in this system, which may be due to insufficient protein levels. We investigated whether codon optimization of insect OR sequences for expression in human cells could facilitate their functional characterization in HEK293 cells with stable and inducible expression.
View Article and Find Full Text PDFInsects detect odors using an array of odorant receptors (ORs), which may expand through gene duplication. How and which new functions may evolve among related ORs within a species remain poorly investigated. We addressed this question by functionally characterizing ORs from the Eurasian spruce bark beetle Ips typographus, in which physiological and behavioral responses to pheromones, volatiles from host and nonhost trees, and fungal symbionts are well described.
View Article and Find Full Text PDFThe Xenopus oocyte and the Human Embryonic Kidney (HEK) 293 cell expression systems are frequently used for functional characterization (deorphanization) of insect odorant receptors (ORs). However, the inherent characteristics of these heterologous systems differ in several aspects, which raises the question of whether the two systems provide comparable results, and how well the results correspond to the responses obtained from olfactory sensory neurons in vivo. Five candidate pheromone receptors were previously identified in the primitive moth Eriocrania semipurpurella (Esem) and their responses were characterized in HEK cells.
View Article and Find Full Text PDFThe chemosensory gene families of insects encode proteins that are crucial for host location, mate finding, oviposition, and avoidance behaviors. The insect peripheral chemosensory system comprises odorant receptors (ORs), gustatory receptors (GRs), ionotropic receptors (IRs), odorant binding proteins (OBPs), chemosensory proteins (CSPs), and sensory neuron membrane proteins (SNMPs). These protein families have been identified from a large number of insect species, however, they still remain unidentified from several taxa that could provide important clues to their evolution.
View Article and Find Full Text PDFThe odorant receptors (ORs) of insects are crucial for host and mate recognition. In moths (Lepidoptera), specialized ORs are involved in male detection of the sex pheromone produced by females. Most moth sex pheromones are C-C acetates, alcohols, and aldehydes (Type I pheromones), and most pheromone receptors (PRs) characterized to date are from higher Lepidoptera (Ditrysia), responding to these types of compounds.
View Article and Find Full Text PDFThe antenna is the main sensory organ of insects, housing different types of sensilla dedicated to detect chemical cues, motion, humidity and temperature. Sensilla are divided into different types based on their wall structure and morphology. Among the olfactory sensilla, there is an enormous variation in the numbers and morphological types present in different insect taxa.
View Article and Find Full Text PDFPheromone receptors (PRs) are essential in moths to detect sex pheromones for mate finding. However, it remains unknown from which ancestral proteins these specialized receptors arose. The oldest lineages of moths, so-called non-ditrysian moths, use short-chain pheromone components, secondary alcohols, or ketones, so called Type 0 pheromones that are similar to many common plant volatiles.
View Article and Find Full Text PDFThe blue gum psyllid, Ctenarytaina eucalypti (Sternorrhyncha: Psyllidae), is an economic threat to Eucalyptus subgenus Symphyomyrtus plantations worldwide. To date, no generally applicable control method is available and the potential for semiochemical-based monitoring or control methods has not yet been investigated. Hence, we conducted the first study on the olfactory sense of C.
View Article and Find Full Text PDF