Plant diseases caused by fungi and Oomycetes represent worldwide threats to crops and forest ecosystems. Effective prevention and appropriate management of emerging diseases rely on rapid detection and identification of the causal pathogens. The increase in genomic resources makes it possible to generate novel genome-enhanced DNA detection assays that can exploit whole genomes to discover candidate genes for pathogen detection.
View Article and Find Full Text PDFPreventing the introduction and establishment of forest invasive alien species (FIAS) such as the Asian gypsy moth (AGM) is a high-priority goal for countries with extensive forest resources such as Canada. The name AGM designates a group of closely related Lymantria species (Lepidoptera: Erebidae: Lymantriinae) comprising two L. dispar subspecies (L.
View Article and Find Full Text PDFInvasive alien tree pathogens can cause significant economic losses as well as large-scale damage to natural ecosystems. Early detection to prevent their establishment and spread is an important approach used by several national plant protection organizations (NPPOs). Molecular detection tools targeting 10 of the most unwanted alien forest pathogens in Canada were developed as part of the TAIGA project (http://taigaforesthealth.
View Article and Find Full Text PDFHybridization and introgression are pervasive evolutionary phenomena that provide insight into the selective forces that maintain species boundaries, permit gene flow, and control the direction of evolutionary change. Poplar trees (Populus L.) are well known for their ability to form viable hybrids and maintain their distinct species boundaries despite this interspecific gene flow.
View Article and Find Full Text PDFTrees bearing novel or exotic gene components are poised to contribute to the bioeconomy for a variety of purposes such as bioenergy production, phytoremediation, and carbon sequestration within the forestry sector, but sustainable release of trees with novel traits in large-scale plantations requires the quantification of risks posed to native tree populations. Over the last century, exotic hybrid poplars produced through artificial crosses were planted throughout eastern Canada as ornamentals or windbreaks and these exotics provide a proxy by which to examine the fitness of exotic poplar traits within the natural environment to assess risk of exotic gene escape, establishment, and spread into native gene pools. We assessed postzygotic fitness traits of native and exotic poplars within a naturally regenerated stand in eastern Canada (Quebec City, QC).
View Article and Find Full Text PDFThe impacts of leaf litter from genetically modified hybrid poplar accumulating high levels of condensed tannins (proanthocyanidins) were examined in soil microcosms consisting of moss growing on sieved soil. Moss preferentially proliferated in microcosms with lower tannin content; DGGE (denaturing gradient gel electrophoresis) detected increased fungal diversity in microcosms with low-tannin litter. The proportion of cloned rDNA sequences from Actinobacteria decreased with litter addition while Bacteroidetes, Chloroflexi, Cyanobacteria, and α-Proteobacteria significantly increased.
View Article and Find Full Text PDFChitinase genes isolated from plants, bacteria or fungi have been widely used in genetic engineering to enhance the resistance of crops and trees to fungal pathogens. However, there are concerns about the possible effect of chitinase-transformed plants on nontarget fungi. This study aimed at evaluating the impact of endochitinase-transformed white spruce on soil fungal communities.
View Article and Find Full Text PDFNitrogen fixation is one of the most important roles played by soil bacterial communities, as fixation supplies nitrogen to many ecosystems which are often N limited. As impacts on this functional group of bacteria might harm the ecosystem's health and reduce productivity, monitoring that particular group is important. Recently, a field trial with Bt white spruce, which constitutively expresses the Cry1Ab insecticidal toxin of Bacillus thuringiensis, was established.
View Article and Find Full Text PDFBacterial communities mediate many of the processes in boreal forest floors that determine the functioning of these ecosystems, yet it remains uncertain whether the composition of these communities is distributed nonrandomly across the landscape. In a study performed in the southern boreal mixed wood forest of Québec, Canada, we tested the hypothesis that stand type (spruce/fir, aspen, paper birch), stand age (57, 78-85, and 131 years old), and geologic parent material (clay and till) were correlated with forest floor bacterial community composition. Forest floors in 54 independent forest stands were sampled to comprise a full factorial array of the three predictor variables.
View Article and Find Full Text PDF