Multiple oscillating time series are typically analyzed in the frequency domain, where coherence is usually said to represent the magnitude of the correlation between two signals at a particular frequency. The correlation being referenced is complex-valued and is similar to the real-valued Pearson correlation in some ways but not others. We discuss the dependence among oscillating series in the context of the multivariate complex normal distribution, which plays a role for vectors of complex random variables analogous to the usual multivariate normal distribution for vectors of real-valued random variables.
View Article and Find Full Text PDFAngular measurements are often modeled as circular random variables, where there are natural circular analogues of moments, including correlation. Because a product of circles is a torus, a -dimensional vector of circular random variables lies on a -dimensional torus. For such vectors we present here a class of graphical models, which we call , based on the full exponential family with pairwise interactions.
View Article and Find Full Text PDFNeural prostheses decode intention from cortical activity to restore upper extremity movement. Typical decoding algorithms extract velocity-a vector quantity with direction and magnitude (speed) -from neuronal firing rates. Standard decoding algorithms accurately recover arm direction, but the extraction of speed has proven more difficult.
View Article and Find Full Text PDFMuch attention has been paid to the question of how Bayesian integration of information could be implemented by a simple neural mechanism. We show that population vectors based on point-process inputs combine evidence in a form that closely resembles Bayesian inference, with each input spike carrying information about the tuning of the input neuron. We also show that population vectors can combine information relatively accurately in the presence of noisy synaptic encoding of tuning curves.
View Article and Find Full Text PDFRecent electrophysiological studies have suggested surges in electrical correlates of consciousness (i.e., elevated gamma power and connectivity) after cardiac arrest (CA).
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
October 2015
Neuroprosthetic devices that interface with the nervous system to restore functional motor activity offer a viable alternative to nerve regeneration, especially in proximal nerve injuries like brachial plexus injuries where muscle atrophy may set in before nerve re-innervation occurs. Prior studies have used control signals from muscle or cortical activity. However, nerve signals are preferred in many cases since they permit more natural and precise control when compared to muscle activity, and can be accessed with much lower risk than cortical activity.
View Article and Find Full Text PDFBackground: Vascular hemodynamics is central to the regulation of neuro-metabolism and plays important roles in peripheral nerves diseases and their prevention. However, at present there are only a few techniques capable of directly measuring peripheral nerve vascular hemodynamics.
Method: Here, we investigate the use of dark-field functional photoacoustic microscopy (fPAM) for intrinsic visualizing of the relative hemodynamics of the rat sciatic nerve in response to localized temperature modulation (i.
Optical imaging techniques reflect different biochemical processes in the brain, which is closely related with neural activity. Scientists and clinicians employ a variety of optical imaging technologies to visualize and study the relationship between neurons, glial cells and blood vessels. In this paper, we present an overview of the current optical approaches used for the in vivo imaging of neurovascular coupling events in small animal models.
View Article and Find Full Text PDF