ACS Appl Mater Interfaces
November 2021
It has previously been shown that ex situ phosphorus-doped polycrystalline silicon on silicon oxide (poly-Si/SiO) passivating contacts can suffer a pronounced surface passivation degradation when subjected to a firing treatment at 800 °C or above. The degradation behavior depends strongly on the processing conditions, such as the dielectric coating layers and the firing temperature. The current work further studies the firing stability of poly-Si contacts and proposes a mechanism for the observed behavior based on the role of hydrogen.
View Article and Find Full Text PDFACS Appl Mater Interfaces
July 2021
Defects and impurities in silicon limit carrier lifetimes and the performance of solar cells. This work explores the use of fluorine to passivate defects in silicon for solar cell applications. We present a simple method to incorporate fluorine atoms into the silicon bulk and interfaces by annealing samples coated with thin thermally evaporated fluoride overlayers.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2016
The use of passivating contacts compatible with typical homojunction thermal processes is one of the most promising approaches to realizing high-efficiency silicon solar cells. In this work, we investigate an alternative rear-passivating contact targeting facile implementation to industrial p-type solar cells. The contact structure consists of a chemically grown thin silicon oxide layer, which is capped with a boron-doped silicon-rich silicon carbide [SiC(p)] layer and then annealed at 800-900 °C.
View Article and Find Full Text PDF