Purpose: In vivo measurements of CSF and venous flow using real-time phase-contrast (RT-PC) MRI facilitate new insights into the dynamics and physiology of both fluid systems. In clinical practice, however, use of RT-PC MRI is still limited. Because many forms of hydrocephalus manifest in infancy and childhood, it is a prerequisite to investigate normal flow parameters during this period to assess pathologies of CSF circulation.
View Article and Find Full Text PDFThis work describes a novel technique for rapid and motion-robust whole-body magnetic resonance imaging (MRI). The method employs highly undersampled radial fast low angle shot (FLASH) sequences to cover large volumes by cross-sectional real-time MRI with automatic slice advancement after each frame. The slice shift typically amounts to a fraction of the slice thickness (e.
View Article and Find Full Text PDFBackground: Blood loss is common during surgical procedures, especially in open cardiac surgery. Allogenic blood transfusion is associated with increased morbidity and mortality. Blood conservation programs in cardiac surgery recommend re-transfusion of shed blood directly or after processing, as this decreases transfusion rates of allogenic blood.
View Article and Find Full Text PDFThis work is a proof-of-concept realization of a novel technique for rapid volumetric acquisition, reconstruction, and visualization of three-directional (3dir) flow velocities. The technique combines real-time 3dir phase-contrast (PC) flow magnetic resonance imaging (MRI) with real-time cross-sectional volume coverage. It offers a rapid examination without dependence on electrocardiography (ECG) or respiratory gating during a continuous image acquisition at up to 16 fps.
View Article and Find Full Text PDFThis work describes a dynamic magnetic resonance imaging (MRI) technique for local scanning of the human body with use of a handheld receive coil or coil array. Real-time MRI is based on highly undersampled radial gradient-echo sequences with joint reconstructions of serial images and coil sensitivity maps by regularized nonlinear inversion (NLINV). For this proof-of-concept study, a fixed slice position and field-of-view (FOV) were predefined from the operating console, while a local receive coil (array) is moved across the body-for the sake of simplicity by the subject itself.
View Article and Find Full Text PDFVenous system pathologies have increasingly been linked to clinically relevant disorders of CSF circulation whereas the exact coupling mechanisms still remain unknown. In this work, flow dynamics of both systems were studied using real-time phase-contrast flow MRI in 16 healthy subjects during normal and forced breathing. Flow evaluations in the aqueduct, at cervical level C3 and lumbar level L3 for both the CSF and venous fluid systems reveal temporal modulations by forced respiration.
View Article and Find Full Text PDFPurpose: To develop an auto-calibrated image reconstruction for highly accelerated multi-directional phase-contrast (PC) MRI that compensates for (1) reconstruction instabilities occurring for phase differences near and (2) phase errors by concomitant magnetic fields that differ for individual radial spokes.
Theory And Methods: A model-based image reconstruction for real-time PC MRI based on nonlinear inversion is extended to multi-directional flow by exploiting multiple flow-encodings for the estimation of velocity vectors. An initial smoothing constraint during iterative optimization is introduced to resolve the ambiguity of the solution space by penalizing phase wraps.
The purpose of this work was to develop an acquisition and reconstruction technique for two- and three-directional (2d and 3d) phase-contrast flow MRI in real time. A previous real-time MRI technique for one-directional (1d) through-plane flow was extended to 2d and 3d flow MRI by introducing in-plane flow sensitivity. The method employs highly undersampled radial FLASH sequences with sequential acquisitions of two or three flow-encoding datasets and one flow-compensated dataset.
View Article and Find Full Text PDFPurpose: To achieve dynamic water/fat separation and field inhomogeneity mapping via model-based reconstructions of undersampled triple-echo multi-spoke radial FLASH acquisitions.
Methods: This work introduces an undersampled triple-echo multi-spoke radial FLASH sequence, which uses (i) complementary radial spokes per echo train for faster spatial encoding, (ii) asymmetric echoes for flexible and nonuniform echo spacing, and (iii) a golden angle increment across frames for optimal k-space coverage. Joint estimation of water, fat, inhomogeneity, and coil sensitivity maps from undersampled triple-echo data poses a nonlinear and non-convex inverse problem which is solved by a model-based reconstruction with suitable regularization.
Background: Respiration-induced pressure changes represent a powerful driving force of CSF dynamics as previously demonstrated using flow-sensitive real-time magnetic resonance imaging (MRI). The purpose of the present study was to elucidate the sensitivity of CSF flow along the spinal canal to forced thoracic versus abdominal respiration.
Methods: Eighteen subjects without known illness were studied using real-time phase-contrast flow MRI at 3 T in the aqueduct and along the spinal canal at levels C3, Th1, Th8 and L3.
The dynamics of human CSF in brain and upper spinal canal are regulated by inspiration and connected to the venous system through associated pressure changes. Upward CSF flow into the head during inspiration counterbalances venous flow out of the brain. Here, we investigated CSF motion along the spinal canal by real-time phase-contrast flow MRI at high spatial and temporal resolution.
View Article and Find Full Text PDF