Salt stress constrains the development and growth of plants. To tolerate it, mechanisms of endocytosis and vacuolar compartmentalization of Na are induced. In this work, the genes that encode a putative activator of vesicular trafficking called MON1/CCZ1 from Solanum chilense, SchMON1 and SchCCZ1, were co-expressed in roots of Arabidopsis thaliana to determine whether the increase in prevacuolar vesicular trafficking also increases the Na compartmentalization capacity and tolerance.
View Article and Find Full Text PDFSalinity in plants generates an osmotic and ionic imbalance inside cells that compromises the viability of the plant. Rab GTPases, the largest family within the small GTPase superfamily, play pivotal roles as regulators of vesicular trafficking in plants, including the economically important and globally cultivated tomato (). Despite their significance, the specific involvement of these small GTPases in tomato vesicular trafficking and their role under saline stress remains poorly understood.
View Article and Find Full Text PDFIntracellular vesicular trafficking ensures the exchange of lipids and proteins between endomembrane compartments. This is relevant under high salinity conditions, since both the removal of transporters and ion channels from the plasma membrane and the compartmentalization of toxic ions require the formation of vesicles, which can be maintained as multivesicular bodies or be fused to the central vacuole. SNARE proteins (Soluble N-ethylmaleimide-sensitive factor attachment receptor) participate in the vesicle fusion process and give specificity to their destination.
View Article and Find Full Text PDFIn plants, vesicular trafficking is crucial for the response and survival to environmental challenges. The active trafficking of vesicles is essential to maintain cell homeostasis during salt stress. Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) are regulatory proteins of vesicular trafficking.
View Article and Find Full Text PDFIntracellular vesicular trafficking ensures the exchange of lipids and proteins between the membranous compartments. Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNARE) play a central role in membrane fusion and they are key factors for vesicular trafficking in plants, including crops economically important such as tomato (Solanum lycopersicum). Taking advantage of the complete genome sequence available of S.
View Article and Find Full Text PDFRabGTPase activating proteins (RabGAP) are responsible for directing the deactivation of vesicular trafficking master regulators associated to plant development, the RabGTPase proteins. Recently, RabGAPs were identified in Arabidopsis and rice, but studies were not yet reported in tomato. Herein, we identified 24 RabGAP-encoding genes in cultivated tomato () and its wild relative genomes ( and ).
View Article and Find Full Text PDFIn plant cells, flavonoids are synthesized in the cytosol and then are transported and accumulated in the vacuole. Glutathione S-transferase-mediated transport has been proposed as a mechanism involved in flavonoid transport, however, whether binding of flavonoids to glutathione S-transferase (GST) or their transport is glutathione-dependent is not well understood. Glutathione S-transferases from Vitis vinífera (VviGSTs) have been associated with the transport of anthocyanins, however, their ability to transport other flavonoids such as proanthocyanidins (PAs) has not been established.
View Article and Find Full Text PDF