Background: In a context of environmental monitoring around installations related to the nuclear fuel cycle, the Diffusive Gradient in Thin-films (DGT) technique captures the integrated concentration of U isotopes in their native environment, yielding comprehensive data on U origin (anthropogenic vs natural), total concentration, and mobility. However, for common deployment times (4-5 days) in moderately basic waters, none of the commercially available binding gels is adapted to measure the total U concentration. So, the development of novel DGT binding gels is timely.
View Article and Find Full Text PDFHigh U concentrations (reaching up to 14,850 mg ⋅ kg), were determined in soils and sediments of a wetland downstream of a former U mine in France. This study aims to identify the origin of radioactive contaminants in the wetland by employing Pb isotope fingerprinting, (U/U) disequilibrium, SEM, and SIMS observations. Additionally, information about U and Ra transport processes was studied using U-238 series disequilibrium.
View Article and Find Full Text PDFUranium (U) is a naturally occurring radioactive heavy metal widely distributed on Earth. Noticeable elevated U concentration and low activity ratio (AR) were occasionally detected in headwater stream of the Essonne river (Seine Basin, France), the namely Œuf river. This paper aims at providing new insight on geogenic U features in headwater streams and examines the role of river-groundwater interaction.
View Article and Find Full Text PDFFor the first time, Diffusive Gradient in Thin-films (DGT) focuses on the inorganic iodine species iodate (IO) and iodide (I). A silver-doped Cl resin (AgdCl), which is known to selectively accumulate I, was used to make a binding gel. Laboratory investigations were designed to verify the suitability of the AgdCl-DGT method to measure the total I concentration in environmental waters.
View Article and Find Full Text PDFThe performances of five Diffusive Gradients in Thin Films (DGT) binding gels, namely 3-mercapto-functionalized silica (3MP), ferrihydrite (Fh), Metsorb, zinc ferrite (ZnFeO) and Zirconium oxide (ZrO) were evaluated for in situ determination of As speciation in water and sediments. A combination of batch experiments at various pH (without addition of buffers) and in the presence of reduced species (Mn, Fe and HS),time-series experiments in oxic waters, and in situ deployment in anoxic river sediments has permitted to evaluate the potential interferences among the binding gels. Firstly, the efficiency of each DGT binding gel dedicated to total As (i.
View Article and Find Full Text PDFThis study deals with further and systematic laboratory evaluation of the already known ammonium 12-molybdophosphate (AMP)-diffusive gradient in thin film (DGT) method, which is used for measuring total Cs concentration in environmental waters. This study confirms that the AMP-binding gel is not stable for pH > 6. In order to reveal a potential impact of AMP degradation on DGT application, time-series experiments were performed by deploying AMP-DGT samplers in Cs-doped moderately basic soft and hard water up to total AMP-binding gel degradation (60 and 175 h of deployment time, respectively).
View Article and Find Full Text PDFA new laboratory-made Zn-ferrite (ZnFe2O4) binding gel is fully tested using Diffusive Gradient in Thin films (DGT) probes to measure total As [including inorganic As(III) and As(V), as well as MonoMethyl Arsenic Acid (MMAA(V)) and DiMethyl Arsenic Acid (DMAA(V))] in river waters and sediment pore waters. The synthesis of the binding gel is easy, cheap and its insertion into the acrylamide gel is not problematic. An important series of triplicate tests have been carried out to validate the use of the Zn-ferrite binding gel in routine for several environmental matrixes studies, in order to test: (i) the effect of pH on the accumulation efficiency of inorganic As species; (ii) the reproducibility of the results; (iii) the accumulation efficiency of As species; (iv) the effects of the ionic strength and possible competitive anions; and (v) the uptake and the elution efficiency of As species after accumulation in the binding gel.
View Article and Find Full Text PDFThe fate of arsenic - a redox sensitive metalloid - in surface sediments is closely linked to early diagenetic processes. The review presents the main redox mechanisms and final products of As that have been evidenced over the last years. Oxidation of organic matter and concomitant reduction of oxidants by bacterial activity result in redox transformations of As species.
View Article and Find Full Text PDF