The Ornstein-Uhlenbeck (OU) model is widely used in comparative phylogenetic analyses to study the evolution of quantitative traits. It has been applied to various purposes, including the estimation of the strength of selection or ancestral traits, inferring the existence of several selective regimes, or accounting for phylogenetic correlation in regression analyses. Most programs implementing statistical inference under the OU model have resorted to maximum-likelihood (ML) inference until the recent advent of Bayesian methods.
View Article and Find Full Text PDFThe field of phylogenetics has burgeoned into a great diversity of statistical models, providing researchers with a vast amount of analytical tools for investigating the evolutionary theory. This abundance of theoretical work has the merit that many different aspects of evolution can be investigated using various types of data. However, empiricists may sometimes struggle to find the right model for their needs amid such variety.
View Article and Find Full Text PDFThe genus Pipa is a species-poor clade of Neotropical frogs and one of the most bizarre-looking due to many highly derived anatomical traits related to their fully aquatic lifestyle. With their African relatives, they form the Pipidae family, which has attracted much attention, especially regarding its anatomy, reproductive biology, paleontology and biogeography. However, the actual diversity and phylogenetic relationships within Pipa remain poorly understood, and thus so do their historical biogeography and the evolution of striking features, such as the absence of teeth and endotrophy in some species.
View Article and Find Full Text PDFChanges in biodiversity may impact infectious disease transmission through multiple mechanisms. We explored the impact of biodiversity changes on the transmission of Amazonian leishmaniases, a group of wild zoonoses transmitted by phlebotomine sand flies (Psychodidae), which represent an important health burden in a region where biodiversity is both rich and threatened. Using molecular analyses of sand fly pools and blood-fed dipterans, we characterized the disease system in forest sites in French Guiana undergoing different levels of human-induced disturbance.
View Article and Find Full Text PDFMany species distribution models (SDMs) are built with precise but geographically restricted presence-absence data sets (e.g., a country) where only a subset of the environmental conditions experienced by a species across its range is considered (i.
View Article and Find Full Text PDFTrue oceanic islands typically host reduced species diversity together with high levels of endemism, which make these environmental set-ups ideal for the exploration of species diversification drivers. In the present study, we used black fly species (Diptera: Simuliidae) from Reunion Island as a model to highlight the main drivers of insect species diversification in this young and remote volcanic island located in the Southwestern Indian Ocean. Using local and regional (Comoros and Seychelles archipelagos) samples as well as specimens from continental Africa, we tested the likelihood of two distinct scenarios, i.
View Article and Find Full Text PDFStudies on melanin-based color variation in a context of natural selection have provided a wealth of information on the link between phenotypic and genetic variation. Here, we evaluated associations between melanic plumage patterns and genetic polymorphism in the Réunion grey white-eye (Zosterops borbonicus), a species in which mutations on MC1R do not seem to play any role in explaining melanic variation. This species exhibits 5 plumage color variants that can be grouped into 3 color forms which occupy discrete geographic regions in the lowlands of Réunion, and a fourth high-elevation form which comprises 2 color morphs (grey and brown) and represents a true color polymorphism.
View Article and Find Full Text PDFThe study of islands as model systems has played an important role in the development of evolutionary and ecological theory. The 50th anniversary of MacArthur and Wilson's (December 1963) article, 'An equilibrium theory of insular zoogeography', was a recent milestone for this theme. Since 1963, island systems have provided new insights into the formation of ecological communities.
View Article and Find Full Text PDFParasite diversity on remote oceanic archipelagos is determined by the number and timing of colonizations and by in situ diversification rate. In this study, we compare intra-archipelago diversity of two hemosporidian parasite genera, Plasmodium and Leucocytozoon, infecting birds of the Mascarene archipelago. Despite the generally higher vagility of Plasmodium parasites, we report a diversity of Plasmodium cytochrome b haplotypes in the archipelago much lower than that of Leucocytozoon.
View Article and Find Full Text PDFHere, we present an adaptation of restriction-site-associated DNA sequencing (RAD-seq) to the Illumina HiSeq2000 technology that we used to produce SNP markers in very large quantities at low cost per unit in the Réunion grey white-eye (Zosterops borbonicus), a nonmodel passerine bird species with no reference genome. We sequenced a set of six pools of 18-25 individuals using a single sequencing lane. This allowed us to build around 600 000 contigs, among which at least 386 000 could be mapped to the zebra finch (Taeniopygia guttata) genome.
View Article and Find Full Text PDFParasite communities on islands are assembled through multiple immigrations and/or in-situ diversification. In this study, we used a phylogenetic approach to investigate the role of such processes in shaping current patterns of diversity in Leucocytozoon, a group of haemosporidian blood parasites infecting whites eyes (Zosterops) endemic to the Mascarene archipelago (south-western Indian Ocean). We found that this parasite community arose through a combination of multiple immigrations and in-situ diversification, highlighting the importance of both processes in explaining island diversity.
View Article and Find Full Text PDF