Background: Cardiac surgery can lead to dysregulation with a pro-inflammatory state, resulting in adverse outcomes. Hemadsorption using the AN69 membrane (Oxiris membrane) has the properties to chelate inflammatory cytokines. We hypothesized that in patients at high risk of inflammation, the use of the Oxiris membrane could decrease inflammation, preserve endothelial function, and improve postoperative outcomes.
View Article and Find Full Text PDFBackground: Stroke is a leading cause of lifelong disability worldwide, partially driven by a reduced ability to use the upper limb in daily life causing increased dependence on caregivers. However, post-stroke functional impairments have only been investigated using limited clinical scores, during short-term longitudinal studies in relatively small patient cohorts. With the addition of technology-based assessments, we propose to complement clinical assessments with more sensitive and objective measures that could more holistically inform on upper limb impairment recovery after stroke, its impact on upper limb use in daily life, and on overall quality of life.
View Article and Find Full Text PDFHistopathology is the gold standard for fungal infection (FI) diagnosis, but it does not provide a genus and/or species identification. The objective of the present study was to develop targeted next-generation sequencing (NGS) on formalin-fixed tissue samples (FTs) to achieve a fungal integrated histomolecular diagnosis. Nucleic acid extraction was optimized on a first group of 30 FTs with Aspergillus fumigatus or infection by macrodissecting the microscopically identified fungal-rich area and comparing Qiagen and Promega extraction methods through DNA amplification by A.
View Article and Find Full Text PDFTherapeutic peptides have regained interest as they can address unmet medical needs and can be an excellent complement to pharmaceutic small molecules and other macromolecular therapeutics. Over the past decades, correctors and potentiators of the cystic fibrosis transmembrane conductance regulator (CFTR), a chloride ion channel causing cystic fibrosis (CF) when mutated, were developed to reduce the symptoms of the patients. In this context, we have previously designed a CFTR-stabilizing iCAL36 peptide able to further increase the CFTR amount in epithelial cells, thereby resulting in a higher CFTR activity.
View Article and Find Full Text PDFFront Cardiovasc Med
February 2022
Cardiovascular diseases (CVD) including acute myocardial infarction (AMI) rank first in worldwide mortality and according to the World Health Organization (WHO), they will stay at this rank until 2030. Prompt revascularization of the occluded artery to reperfuse the myocardium is the only recommended treatment (by angioplasty or thrombolysis) to decrease infarct size (IS). However, despite beneficial effects on ischemic lesions, reperfusion leads to ischemia-reperfusion (IR) injury related mainly to apoptosis.
View Article and Find Full Text PDFRecently, we designed novel amphipathic cell-penetrating peptides, called WRAP, able to transfer efficiently siRNA molecules into cells. In order to gain more information about the relationship between amino acid composition, nanoparticle formation and cellular internalization of these peptides composed of only three amino acids (leucine, arginine and tryptophan), we performed a structure-activity relationship (SAR) study. First, we compared our WRAP1 and WRAP5 peptides with the C6M1 peptide also composed of the same three amino acids and showing similar behaviors in siRNA transfection.
View Article and Find Full Text PDFGene therapy offers the possibility to skip, repair, or silence faulty genes or to stimulate the immune system to fight against disease by delivering therapeutic nucleic acids (NAs) to a patient. Compared to other drugs or protein treatments, NA-based therapies have the advantage of being a more universal approach to designing therapies because of the versatility of NA design. NAs (siRNA, pDNA, or mRNA) have great potential for therapeutic applications for an immense number of indications.
View Article and Find Full Text PDFIn Arabidopsis thaliana, phytochrome B (phyB) is the dominant receptor of photomorphogenic development under red light. Phytochrome B interacts with a set of downstream regulatory proteins, including PHYTOCHROME INTERACTING FACTOR 3 (PIF3). The interaction between PIF3 and photoactivated phyB leads to the rapid phosphorylation and degradation of PIF3 and also to the degradation of phyB, events which are required for proper photomorphogenesis.
View Article and Find Full Text PDFPurpose: Data on the benefit or or harmful effects of oxygen level on ischemic reperfusion injuries in cardiac surgery are insufficient. We hypothesized that hyperoxia during cardiopulmonary bypass decreases the incidence of postoperative atrial fibrillation (POAF) and ventricular fibrillation, and therefore decreases cardiovascular morbidity (CARDIOX study).
Methods: An open-label, randomized clinical trial including adults undergoing elective cardiac surgery, i.
The diagnosis of the life-threatening invasive Candida infections is mainly established using culture of specimens that might be collected on different devices including ethylene diamine tetraacetic acid (EDTA)-coated tubes. Despite the knowledge that EDTA inhibits bacterial cultures, and its use to treat oral fungal infections, its impact on Candida cultures has not been completely assessed. This study aimed at assessing it on azole-resistant and azole-susceptible strains.
View Article and Find Full Text PDFBecause it induces a state of reduced awareness and deep relaxation, hypnosis is thought to be efficient at relieving stress and anxiety. This study examined whether hypnosis may alter the pattern and time evolution of maternal and fetal stress. Here we report a 23-yrs-old primigravida woman at 31-weeks' gestation who underwent daily sessions of hypnosis during one week.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2015
The red/far red light absorbing photoreceptor phytochrome-B (phyB) cycles between the biologically inactive (Pr, λmax, 660 nm) and active (Pfr; λmax, 730 nm) forms and functions as a light quality and quantity controlled switch to regulate photomorphogenesis in Arabidopsis. At the molecular level, phyB interacts in a conformation-dependent fashion with a battery of downstream regulatory proteins, including PHYTOCHROME INTERACTING FACTOR transcription factors, and by modulating their activity/abundance, it alters expression patterns of genes underlying photomorphogenesis. Here we report that the small ubiquitin-like modifier (SUMO) is conjugated (SUMOylation) to the C terminus of phyB; the accumulation of SUMOylated phyB is enhanced by red light and displays a diurnal pattern in plants grown under light/dark cycles.
View Article and Find Full Text PDFFreshly matured seeds exhibit primary dormancy, which prevents germination until environmental conditions are favorable. The establishment of dormancy occurs during seed development and involves both genetic and environmental factors that impact on the ratio of two antagonistic phytohormones: abscisic acid (ABA), which promotes dormancy, and gibberellic acid, which promotes germination. Although our understanding of dormancy breakage in mature seeds is well advanced, relatively little is known about the mechanisms involved in establishing dormancy during seed maturation.
View Article and Find Full Text PDFThe period following seedling emergence is a particularly vulnerable stage in the plant life cycle. In Arabidopsis thaliana, the phytochrome-interacting factor (PIF) subgroup of basic-helix-loop-helix transcription factors has a pivotal role in regulating growth during this early phase, integrating environmental and hormonal signals. We previously showed that SPATULA (SPT), a PIF homolog, regulates seed dormancy.
View Article and Find Full Text PDFAccurate development of the gynoecium, the female reproductive organ, is necessary to achieve efficient fertilization. In Arabidopsis, the correct patterning of the apical-basal axis of the gynoecium requires the establishment of a morphogenic gradient of auxin. This allows the production of specialized tissues, whose roles consist of attracting pollen, allowing pollen tube growth and protecting the ovules within the ovaries.
View Article and Find Full Text PDFThe ability to withstand environmental temperature variation is essential for plant survival. Former studies in Arabidopsis revealed that light signalling pathways had a potentially unique role in shielding plant growth and development from seasonal and daily fluctuations in temperature. In this paper we describe the molecular circuitry through which the light receptors cry1 and phyB buffer the impact of warm ambient temperatures.
View Article and Find Full Text PDFPlants exhibit a wide variety of growth rates that are known to be determined by genetic and environmental factors, and different plants grow optimally at different temperatures, indicating that this is a genetically determined character. Moderate decreases in ambient temperature inhibit vegetative growth, but the mechanism is poorly understood, although a decrease in gibberellin (GA) levels is known to be required. Here we demonstrate that the basic helix-loop-helix transcription factor SPATULA (SPT), previously known to be a regulator of low temperature-responsive germination, mediates the repression of growth by cool daytime temperatures but has little or no growth-regulating role under warmer conditions.
View Article and Find Full Text PDFLight is vital for plant growth and development: It provides energy for photosynthesis, but also reliable information on seasonal timing and local habitat conditions. Light sensing is therefore of paramount importance for plants. Thus, plants have evolved sophisticated light receptors and signaling networks that detect and respond to changes in light intensity, duration, and spectral quality.
View Article and Find Full Text PDFPhytochrome interacting factor (PIF) transcription factors have been shown to be important in the regulation of seed dormancy and germination by environmental cues. Many PIF-family transcription factors are expressed in seeds but only PIF1 and SPATULA (SPT) have been tested for a role in germination control. Here we show that PIF6 is expressed strongly during seed development, and that two splice variants exist, one full length (the alpha form), and a second, the beta form, in which a cryptic intron containing the potential DNA binding domain is spliced out, predicted to lead to the generation of a premature stop codon.
View Article and Find Full Text PDFThe ability to switch from skotomorphogenic to photomorphogenic development is essential for seedling survival. Central to this mechanism are the phytochrome interacting factors that are important for maintaining the skotomorphogenic state and regulating the switch to photomorphogenesis.
View Article and Find Full Text PDFSince the discovery of the physical interaction between phytochrome B and the basic helix-loop-helix (bHLH) transcription factor (TF) PIF3 a decade ago, plant phytochrome-signalling research has largely focused on understanding the mechanisms through which phytochromes and members of this bHLH family signal. This concerted effort has revealed how phytochrome and bHLH TF control gene expression and plant growth, and has assigned precise roles to a number of genes in the PIF3-like bHLH TF clade. This work has focused largely on cell autonomous signalling events; however, to synchronize plant growth and developmental events at the tissue and organ level, temporal and spatial signal integration is crucial.
View Article and Find Full Text PDFBackground: Plants integrate signals from the environment and use these to modify the timing of development according to seasonal cues. Seed germination is a key example of this phenomenon and in Arabidopsis is promoted by the synergistic interaction of light and low temperatures in dormant seeds. This signaling pathway is known to converge on the regulation of the gibberellin (GA) biosynthetic genes GA3 oxidase (GA3ox), whose expression is transcriptionally induced by light and cold in imbibed seeds.
View Article and Find Full Text PDFWe have constructed a tobacco psbA gene deletion mutant that is devoid of photosystem II (PSII) complex. Analysis of thylakoid membranes revealed comparable amounts, on a chlorophyll basis, of photosystem I (PSI), the cytochrome b6f complex and the PSII light-harvesting complex (LHCII) antenna proteins in wild-type (WT) and DeltapsbA leaves. Lack of PSII in the mutant, however, resulted in over 10-fold higher relative amounts of the thylakoid-associated plastid terminal oxidase (PTOX) and the NAD(P)H dehydrogenase (NDH) complex.
View Article and Find Full Text PDFThe plastid terminal oxidase (PTOX) encoded by the Arabidopsis IMMUTANS gene was expressed in Escherichia coli cells and its quinone/oxygen oxidoreductase activity monitored in isolated bacterial membranes using NADH as an electron donor. Specificity for plastoquinone was observed. Neither ubiquinone, duroquinone, phylloquinone nor benzoquinone could substitute for plastoquinone in this assay.
View Article and Find Full Text PDFChlororespiration has been defined as a respiratory electron transport chain in interaction with photosynthetic electron transport involving both non-photochemical reduction and oxidation of plastoquinones. Different enzymatic activities, including a plastid-encoded NADH dehydrogenase complex, have been reported to be involved in the non-photochemical reduction of plastoquinones. However, the enzyme responsible for plasquinol oxidation has not yet been clearly identified.
View Article and Find Full Text PDF