Publications by authors named "Joslynn Lee"

Specialization of many cells, including the acinar cells of the salivary glands and pancreas, milk-producing cells of mammary glands, mucus-secreting goblet cells, antibody-producing plasma cells, and cells that generate the dense extracellular matrices of bone and cartilage, requires scaling up both secretory machinery and cell-type specific secretory cargo. Using tissue-specific genome-scale analyses, we determine how increases in secretory capacity are coordinated with increases in secretory load in the Drosophila salivary gland (SG), an ideal model for gaining mechanistic insight into the functional specialization of secretory organs. Our findings show that CrebA, a bZIP transcription factor, directly binds genes encoding the core secretory machinery, including protein components of the signal recognition particle and receptor, ER cargo translocators, Cop I and Cop II vesicles, as well as the structural proteins and enzymes of these organelles.

View Article and Find Full Text PDF

As a result of high-throughput protein structure initiatives, over 14,400 protein structures have been solved by Structural Genomics (SG) centers and participating research groups. While the totality of SG data represents a tremendous contribution to genomics and structural biology, reliable functional information for these proteins is generally lacking. Better functional predictions for SG proteins will add substantial value to the structural information already obtained.

View Article and Find Full Text PDF

Background: Misexpression of the double homeodomain transcription factor DUX4 results in facioscapulohumeral muscular dystrophy (FSHD). A DNA-binding consensus with two tandem TAAT motifs based on chromatin IP peaks has been discovered; however, the consensus has multiple variations (flavors) of unknown relative activity. In addition, not all peaks have this consensus, and the Pitx1 promoter, the first DUX4 target sequence mooted, has a different TAAT-rich sequence.

View Article and Find Full Text PDF

Transcription factors affect spatiotemporal patterns of gene expression often regulating multiple aspects of tissue morphogenesis, including cell-type specification, cell proliferation, cell death, cell polarity, cell shape, cell arrangement and cell migration. In this work, we describe a distinct role for Ribbon (Rib) in controlling cell shape/volume increases during elongation of the Drosophila salivary gland (SG). Notably, the morphogenetic changes in rib mutants occurred without effects on general SG cell attributes such as specification, proliferation and apoptosis.

View Article and Find Full Text PDF

Nrf2, a basic leucine zipper transcription factor encoded by the gene NFE2L2, is a master regulator of the transcriptional response to oxidative stress. Nrf2 is structurally and functionally conserved from insects to humans, and it heterodimerizes with the small MAF transcription factors to bind a consensus DNA sequence (the antioxidant response element, or ARE) and regulate gene expression. We have used genome-wide chromatin immunoprecipitation and gene expression data to identify direct Nrf2 target genes in Drosophila and humans.

View Article and Find Full Text PDF

Molecular modeling techniques were applied to the design, synthesis and optimization of a new series of xanthine based adenosine A(2A) receptor antagonists. The optimized lead compound was converted to a PEG derivative and a functional in vitro bioassay used to confirm efficacy. Additionally, the PEGylated version showed enhanced aqueous solubility and was inert to photoisomerization, a known limitation of existing antagonists of this class.

View Article and Find Full Text PDF

Background: The prediction of biochemical function from the 3D structure of a protein has proved to be much more difficult than was originally foreseen. A reliable method to test the likelihood of putative annotations and to predict function from structure would add tremendous value to structural genomics data. We report on a new method, Structurally Aligned Local Sites of Activity (SALSA), for the prediction of biochemical function based on a local structural match at the predicted catalytic or binding site.

View Article and Find Full Text PDF

A new approach to the functional classification of protein 3D structures is described with application to some examples from structural genomics. This approach is based on functional site prediction with THEMATICS and POOL. THEMATICS employs calculated electrostatic potentials of the query structure.

View Article and Find Full Text PDF