A method is presented for extracting the configurational entropy of solute molecules from molecular dynamics simulations, in which the entropy is computed as an expansion of multidimensional mutual information terms, which account for correlated motions among the various internal degrees of freedom of the molecule. The mutual information expansion is demonstrated to be equivalent to estimating the full-dimensional configurational probability density function (PDF) using the generalized Kirkwood superposition approximation (GKSA). While the mutual information expansion is derived to the full dimensionality of the molecule, the current application uses a truncated form of the expansion in which all fourth- and higher-order mutual information terms are neglected.
View Article and Find Full Text PDF