Publications by authors named "Josien H"

Cyclic peptides are an important class of molecules that gained significant attention in the field of drug discovery due to their unique pharmacological characteristics and enhanced proteolytic stability. Yet, gastrointestinal degradation remains a major hurdle in the discovery of orally bioavailable cyclic peptides. Soft spot identification (SSID) of the regions in the cyclic peptide sequence susceptible to amide hydrolysis by proteases is used in the discovery stage to guide medicinal chemistry design.

View Article and Find Full Text PDF

Although stapled α-helical peptides can address challenging targets, their advancement is impeded by poor understandings for making them cell permeable while avoiding off-target toxicities. By synthesizing >350 molecules, we present workflows for identifying stapled peptides against Mdm2(X) with in vivo activity and no off-target effects. Key insights include a clear correlation between lipophilicity and permeability, removal of positive charge to avoid off-target toxicities, judicious anionic residue placement to enhance solubility/behavior, optimization of C-terminal length/helicity to enhance potency, and optimization of staple type/number to avoid polypharmacology.

View Article and Find Full Text PDF

Cyclic peptides are poised to target historically difficult to drug intracellular protein-protein interactions, however, their general cell impermeability poses a challenge for characterizing function. Recent advances in microfluidics have enabled permeabilization of the cytoplasmic membrane by physical cell deformation (i.e.

View Article and Find Full Text PDF
Article Synopsis
  • MK-0616 is a newly developed oral PCSK9 inhibitor that raises hope for an alternative to injectable treatments, following nearly 20 years of research without an effective oral option.* -
  • Using advanced mRNA display screening and structured drug design, MK-0616 was shown to effectively lower PCSK9 levels and significantly reduce LDL cholesterol in clinical trials.* -
  • The trials indicated that MK-0616 has a strong affinity for PCSK9 and demonstrated promising safety and efficacy, suggesting it could be a game changer in cholesterol management.*
View Article and Find Full Text PDF

MK-8666, a selective GPR40 agonist developed for the treatment of type 2 diabetes mellitus, was discontinued in phase I clinical trials due to liver safety concerns. To address whether chemically reactive metabolites played a causative role in the observed drug induced liver injury (DILI), we characterized the metabolism, covalent binding to proteins, and amino acid targets of MK-8666 in rat and human hepatocytes or cofactor-fortified liver microsomes. MK-8666 was primarily metabolized to an acyl glucuronide in hepatocytes of both species and a taurine conjugate in rat hepatocytes.

View Article and Find Full Text PDF

GPR40 (FFAR1 or FFA1) is a G protein-coupled receptor, primarily expressed in pancreatic islet β-cells and intestinal enteroendocrine cells. When activated by fatty acids, GPR40 elicits increased insulin secretion from islet β-cells only in the presence of elevated glucose levels. Towards this end, studies were undertaken towards discovering a novel GPR40 Agonist whose mode of action is via Positive Allosteric Modulation of the GPR40 receptor (AgoPAM).

View Article and Find Full Text PDF

Clinical studies indicate that partial agonists of the G-protein-coupled, free fatty acid receptor 1 GPR40 enhance glucose-dependent insulin secretion and represent a potential mechanism for the treatment of type 2 diabetes mellitus. Full allosteric agonists (AgoPAMs) of GPR40 bind to a site distinct from partial agonists and can provide additional efficacy. We report the 3.

View Article and Find Full Text PDF

GPR40 is a G-protein-coupled receptor expressed primarily in pancreatic islets and intestinal L-cells that has been a target of significant recent therapeutic interest for type II diabetes. Activation of GPR40 by partial agonists elicits insulin secretion only in the presence of elevated blood glucose levels, minimizing the risk of hypoglycemia. GPR40 agoPAMs have shown superior efficacy to partial agonists as assessed in a glucose tolerability test (GTT).

View Article and Find Full Text PDF

The design, synthesis, SAR, and biological profile of a substituted 4-morpholine sulfonamide series of γ-secretase inhibitors (GSIs) were described. In several cases, the resulting series of GSIs reduced CYP liabilities and improved γ-secretase inhibition activity compared to our previous research series. Selected compounds demonstrated significant reduction of amyloid-β (Aβ) after acute oral dosing in a transgenic animal model of Alzheimer's disease (AD).

View Article and Find Full Text PDF

We have been focused on identifying a structurally different next generation inhibitor to MK-5172 (our Ns3/4a protease inhibitor currently under regulatory review), which would achieve superior pangenotypic activity with acceptable safety and pharmacokinetic profile. These efforts have led to the discovery of a novel class of HCV NS3/4a protease inhibitors containing a unique spirocyclic-proline structural motif. The design strategy involved a molecular-modeling based approach, and the optimization efforts on the series to obtain pan-genotypic coverage with good exposures on oral dosing.

View Article and Find Full Text PDF

In the present paper, we described the design, synthesis, SAR, and biological profile of a novel spirocyclic sulfone series of γ-secretase inhibitors (GSIs) related to MRK-560. We utilized an additional spirocyclic ring system to stabilize the active chair conformation of the parent γ-secretase inhibitors. The resulting series is devoid of the CYP2C9 inhibition liability of MRK-560.

View Article and Find Full Text PDF

The development of renin inhibitors with favorable oral pharmacokinetic profiles has been a longstanding challenge for the pharmaceutical industry. As part of our work to identify inhibitors of BACE1, we have previously developed iminopyrimidinones as a novel pharmacophore for aspartyl protease inhibition. In this letter we describe how we modified substitution around this pharmacophore to develop a potent, selective and orally active renin inhibitor.

View Article and Find Full Text PDF

An investigation is detailed of the structure activity relationships (SAR) of two sulfone side chains of compound (-)-1a (SCH 900229), a potent, PS1-selective γ-secretase inhibitor and clinical candidate for the treatment of Alzheimer's disease. Specifically, 4-CF(3) and 4-Br substituted arylsulfone analogs, (-)-1b and (-)-1c, are equipotent to compound (-)-1a. On the right hand side chain, linker size and terminal substituents of the pendant sulfone group are also investigated.

View Article and Find Full Text PDF

In an attempt to further improve overall profiles of the oxadiazine series of GSMs, in particular the hERG activity, conformational modifications of the core structure resulted in the identification of fused oxadiazepines such as 7i which had an improved hERG inhibition profile and was a highly efficacious GSM in vitro and in vivo in rats. These SAR explorations offer opportunities to identify potential drugs to treat Alzheimer's disease.

View Article and Find Full Text PDF

An exploration of the SAR of the side chain of a novel tricyclic series of γ-secretase inhibitors led to the identification of compound (-)-16 (SCH 900229), which is a potent and PS1 selective inhibitor of γ-secretase (Aβ40 IC50 = 1.3 nM). Compound (-)-16 demonstrated excellent lowering of Aβ after oral administration in preclinical animal models and was advanced to human clinical trials for further development as a therapeutic agent for the treatment of Alzheimer's disease.

View Article and Find Full Text PDF

Cyclic hydroxyamidines were designed and validated as isosteric replacements of the amide functionality. Compounds with these structural motifs were found to be metabolically stable and to possess highly desirable pharmacokinetic profiles. These designs were applied in the identification of γ-secretase modulators leading to highly efficacious agents for reduction of central nervous system Aβ(42) in various animal models.

View Article and Find Full Text PDF

Accumulation of the β-amyloid (Aβ) peptides is one of the major pathologic hallmarks in the brains of Alzheimer's disease (AD) patients. Aβ is generated by sequential proteolytic cleavage of the amyloid precursor protein (APP) catalyzed by β- and γ-secretases. Inhibition of Aβ production by γ-secretase inhibitors (GSIs) is thus being pursued as a target for treatment of AD.

View Article and Find Full Text PDF

A novel series of tricyclic gamma-secretase inhibitors was designed and synthesized via a conformational analysis of literature compounds. The preliminary results have shown that compounds in this new series have much improved in vitro potency and in vivo profiles. More importantly, they have greatly reduced Notch related toxicity that was associated with previous gamma-secretase inhibitors.

View Article and Find Full Text PDF

A new class of 2,6-disubstituted morpholine N-arylsulfonamide gamma-secretase inhibitors was designed based on the introduction of a morpholine core in lieu or piperidine in our lead series. This resulted in compounds with improved CYP 3A4 profiles. Several analogs that were active at lowering Abeta levels in Tg CRND8 mice upon oral administration were identified.

View Article and Find Full Text PDF

Development of cis-2,4,6-trisubstituted piperidine N-arylsulfonamides as gamma-secretase inhibitors for the potential treatment of Alzheimer's disease (AD) is reported.

View Article and Find Full Text PDF

The design and development of a new class of small 2,6-disubstituted piperidine N-arylsulfonamide gamma-secretase inhibitors is reported. Lowering molecular weight including the use of conformational constraint led to compounds with less CYP 3A4 liability compared to early leads. Compounds active orally in lowering Abeta levels in Tg CRND8 mice were identified as potential treatments for Alzheimer's disease.

View Article and Find Full Text PDF

Attachment of the cyclopropylcarbamate group to the piperidine core of gamma-secretase inhibitors leads to a dramatic increase of their in vitro potency. Strategies for subsequent improvement of the in vivo pharmacokinetic profile of the series are discussed. Resulting compounds significantly reduce Abeta levels in TgCRND8 mice after a single PO dosing at 30 mpk.

View Article and Find Full Text PDF

A novel piperidine series of gamma-secretase inhibitors, potentially useful for the treatment of Alzheimer's disease, is disclosed. SAR investigation revealed the requirement for cis-stereochemistry of the substituents attached to the core, which resulted in the chair-like diaxial conformation of the piperidine ring. The series was optimized to provide inhibitors with IC(50)'s in the single-digit nanomolar range.

View Article and Find Full Text PDF

The development of a novel series of tetrahydroquinoline-derived gamma-secretase inhibitors for the potential treatment of Alzheimer's disease is described.

View Article and Find Full Text PDF

Accumulation of amyloid beta-peptide (Abeta) is considered a key step in the etiology of Alzheimer's disease. Abeta is produced by sequential cleavage of the amyloid precursor protein by beta- and gamma-secretase enzymes. Consequently, inhibition of gamma-secretase provides a promising therapeutic approach to treat Alzheimer's disease.

View Article and Find Full Text PDF