Publications by authors named "Josiane N Silva"

Recent studies indicated an important role of connexins, gap junction proteins, in the regulation of metabolism. However, most of these studies focused on the glial expression of connexins, whereas the actions of connexins in neurons are still poorly investigated. Thus, the present study had the objective to investigate the possible involvement of gap junctions, and in particular connexin 43 (CX43), for the central regulation of energy homeostasis.

View Article and Find Full Text PDF

Breathing results from the interaction of two distinct oscillators: the pre-Bötzinger Complex (preBötC), which drives inspiration; and the lateral parafacial region (pFRG), which drives active expiration. The pFRG is silent at rest and becomes rhythmically active during the stimulation of peripheral chemoreceptors, which also activates adrenergic C1 cells. We postulated that the C1 cells and the pFRG may constitute functionally distinct but interacting populations for controlling expiratory activity during hypoxia.

View Article and Find Full Text PDF

Enhanced central chemoreflex (CC) gain is observed in volume overload heart failure (HF) and is correlated with autonomic dysfunction and breathing disorders. The aim of this study was to determine the role of the CC in the development of respiratory and autonomic dysfunction in HF. Volume overload was surgically created to induce HF in male Sprague-Dawley rats.

View Article and Find Full Text PDF

Active expiration (AE) is part of the breathing phase; it is conditional and occurs when we increase our metabolic demand, such as during hypercapnia, hypoxia, or exercise. The parafacial respiratory group (pFRG) is involved in AE. Data from the literature suggest that excitatory and the absence of inhibitory inputs to the pFRG are necessary to determine AE.

View Article and Find Full Text PDF

The retrotrapezoid nucleus (RTN) contains chemosensitive cells that distribute CO-dependent excitatory drive to the respiratory network. This drive facilitates the function of the respiratory central pattern generator (rCPG) and increases sympathetic activity. It is also evidenced that during hypercapnia, the late-expiratory (late-E) oscillator in the parafacial respiratory group (pFRG) is activated and determines the emergence of active expiration.

View Article and Find Full Text PDF

The Kölliker-Fuse (KF) region, located in the dorsolateral pons, projects to several brainstem areas involved in respiratory regulation, including the chemoreceptor neurons within the retrotrapezoid nucleus (RTN). Several lines of evidence indicate that the pontine KF region plays an important role in the control of the upper airways for the maintenance of appropriate airflow to and from the lungs. Specifically, we hypothesized that the KF region is involved in mediating the response of the hypoglossal motor activity to central respiratory chemoreflex activation and to stimulation of the chemoreceptor neurons within the RTN region.

View Article and Find Full Text PDF

The rostroventrolateral medulla contains two functional neuronal populations: (1) the parafacial respiratory group (pFRG) neurons and (2) the chemosensitive retrotrapezoid nucleus (RTN) neurons. Using anatomical and physiological techniques, we investigated the role of the RTN/pFRG in CO2-induced active expiration (AE) in urethane-anesthetized rats. Anterograde tracing using biotinylated dextran amine (BDA) revealed dense neuronal projections emanating from the RTN/pFRG to the caudal ventral respiratory group (cVRG), 60% of which contained vesicular glutamate transporter-2.

View Article and Find Full Text PDF