Matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) allows for highly multiplexed, unlabeled mapping of analytes from tissue sections. However, further work is needed to improve the sensitivity and depth of coverage for protein and peptide IMS. We demonstrate signal enhancement of proteolytic peptides from thin tissue sections of human kidney by conventional MALDI (MALDI-1) augmented using a second ionizing laser (termed MALDI-2).
View Article and Find Full Text PDFMatrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) allows for highly multiplexed, untargeted detection of many hundreds of analytes from tissue. Recently, laser postionization (MALDI-2) has been developed for increased ion yield and sensitivity for lipid IMS. However, the dependence of MALDI-2 performance on the various lipid classes is largely unknown.
View Article and Find Full Text PDFTandem mass spectrometry (MS/MS) is often used to identify lipids in matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) workflows. The molecular specificity afforded by MS/MS is crucial on MALDI time-of-flight (TOF) platforms that generally lack high resolution accurate mass measurement capabilities. Unfortunately, imaging MS/MS workflows generally only monitor a single precursor ion over the imaged area, limiting the throughput of this methodology.
View Article and Find Full Text PDFA transmission geometry optical configuration allows for smaller laser spot size to facilitate high-resolution matrix-assisted laser/desorption ionization (MALDI) mass spectrometry. This increase in spatial resolution (ie, smaller laser spot size) is often associated with a decrease in analyte signal. MALDI-2 is a post-ionization technique, which irradiates ions and neutrals generated in the initial MALDI plume with a second orthogonal laser pulse, and has been shown to improve sensitivity.
View Article and Find Full Text PDF