Publications by authors named "Joshua Ziegler"

Building a fault-tolerant quantum computer will require vast numbers of physical qubits. For qubit technologies based on solid-state electronic devices, integrating millions of qubits in a single processor will require device fabrication to reach a scale comparable to that of the modern complementary metal-oxide-semiconductor (CMOS) industry. Equally important, the scale of cryogenic device testing must keep pace to enable efficient device screening and to improve statistical metrics such as qubit yield and voltage variation.

View Article and Find Full Text PDF

Many techniques to fabricate complex nanostructures and quantum emitting defects in low dimensional materials for quantum information technologies rely on the patterning capabilities of focused ion beam (FIB) systems. In particular, the ability to pattern arrays of bright and stable room temperature single-photon emitters (SPEs) in 2D wide-bandgap insulator hexagonal boron nitride (hBN) via high-energy heavy-ion FIB allows for direct placement of SPEs without structured substrates or polymer-reliant lithography steps. However, the process parameters needed to create hBN SPEs with this technique are dependent on the growth method of the material chosen.

View Article and Find Full Text PDF

DJ-1, a 20.7 kDa protein, is overexpressed in people who have bladder cancer (BC). Its elevated concentration in urine allows it to serve as a marker for BC.

View Article and Find Full Text PDF

Although Li-ion batteries have emerged as the battery of choice for electric vehicles and large-scale smart grids, significant research efforts are devoted to identifying materials that offer higher energy density, longer cycle life, lower cost, and/or improved safety compared to those of conventional Li-ion batteries based on intercalation electrodes. By moving beyond intercalation chemistry, gravimetric capacities that are 2-5 times higher than that of conventional intercalation materials (, LiCoO and graphite) can be achieved. The transition to higher-capacity electrode materials in commercial applications is complicated by several factors.

View Article and Find Full Text PDF

We conduct an in-depth analysis of the electroclinic effect in chiral, ferroelectric liquid crystal systems that have a first-order smectic-A^{*}-smectic-C^{*} (Sm-A^{*}-Sm-C^{*}) transition, and show that such systems can be either type I or type II. In temperature-field parameter space type-I systems exhibit a macroscopically achiral (in which the Sm-C_{M}^{*} helical superstructure is expelled) low-tilt (LT) Sm-C_{U}^{*}-high-tilt (HT) Sm-C_{U}^{*} critical point, which terminates a LT Sm-C_{U}^{*}-HT Sm-^{*}C_{U} first-order boundary. Notationally, Sm-C_{M}^{*} or Sm-C_{U}^{*} denotes the Sm-C^{*} phase with or without a modulated superstructure.

View Article and Find Full Text PDF

Quantum emitters (QEs) in 2D hexagonal boron nitride (hBN) are extremely bright and are stable at high temperature and under harsh chemical conditions. Because they reside within an atomically thin 2D material, these QEs have a unique potential to couple strongly to hybrid optoelectromechanical and quantum devices. However, this potential for coupling has been underexplored because of challenges in nanofabrication and patterning of hBN QEs.

View Article and Find Full Text PDF

Quantum emitters in two-dimensional hexagonal boron nitride (hBN) are attractive for a variety of quantum and photonic technologies because they combine ultra-bright, room-temperature single-photon emission with an atomically thin crystal. However, the emitter's prominence is hindered by large, strain-induced wavelength shifts. We report the discovery of a visible-wavelength, single-photon emitter (SPE) in a zero-dimensional boron nitride allotrope (the boron nitride nanococoon, BNNC) that retains the excellent optical characteristics of few-layer hBN while possessing an emission line variation that is lower by a factor of 5 than the hBN emitter.

View Article and Find Full Text PDF

A series of pyridinediimine (PDI) iron complexes that contain a pendant 15-crown-5 located in the secondary coordination sphere were synthesized and characterized. The complex Fe((15c5)PDI)(CO)2 (2) was shown in both the solid state and solution to encapsulate redox-inactive metal ions. Modest shifts in the reduction potential of the metal-ligand scaffold were observed upon encapsulation of either Na(+) or Li(+).

View Article and Find Full Text PDF