Publications by authors named "Joshua Wythe"

Here we present the Multisite Assembly of Gateway Induced Clones (MAGIC) system, which harnesses site-specific recombination-based cloning via Gateway technology for rapid, modular assembly of between 1 and 3 "Entry" vector components, all into a fourth, standard high copy "Destination" plasmid backbone. The MAGIC toolkit spans a range of in vitro and in vivo uses, from directing tunable gene expression, to driving simultaneous expression of microRNAs and fluorescent reporters, to enabling site-specific recombinase-dependent gene expression. All MAGIC system components are directly compatible with existing multisite gateway Tol2 systems currently used in zebrafish, as well as existing eukaryotic cell culture expression Destination plasmids, and available mammalian lentiviral and adenoviral Destination vectors, allowing rapid cross-species experimentation.

View Article and Find Full Text PDF
Article Synopsis
  • Brain arteriovenous malformations (bAVMs) are risky blood vessel abnormalities in the brain caused by mutations, particularly in the KRAS gene.
  • Research using mice models shows that these mutations lead to bAVMs in specific locations of the brain that match patterns found in humans, and these locations are tied to the likelihood of bleeding events.
  • Blocking a specific pathway linked to KRAS mutations may offer a non-surgical treatment option for managing bAVMs, suggesting promising therapeutic approaches for affected patients.
View Article and Find Full Text PDF
Article Synopsis
  • - Tissue clearing is crucial for viewing larger tissues or organs in 3D, and the text outlines a protocol that uses an aqueous-based method called EZ Clear on adult mouse tissues.
  • - The protocol includes steps for proper perfusion and fixation of mouse organs, along with tips for effective lipid removal and matching the refractive index to improve imaging clarity.
  • - It also offers imaging parameters to help visualize both external fluorescent dyes and natural fluorescent markers in the adult mouse tissues, directing readers to Hsu et al. for full protocol details.
View Article and Find Full Text PDF

Microvascular networks are challenging to model because these structures are currently near the diffraction limit for most advanced three-dimensional imaging modalities, including confocal and light sheet microscopy. This makes semantic segmentation difficult, because individual components of these networks fluctuate within the confines of individual pixels. Level set methods are ideally suited to solve this problem by providing surface and topological constraints on the resulting model, however these active contour techniques are extremely time intensive and impractical for terabyte-scale images.

View Article and Find Full Text PDF

Modulation of the heart's immune microenvironment is crucial for recovery after ischemic events such as myocardial infarction (MI). Endothelial cells (ECs) can have immune regulatory functions; however, interactions between ECs and the immune environment in the heart after MI remain poorly understood. We identified an EC-specific IFN responsive and immune regulatory gene signature in adult and pediatric heart failure (HF) tissues.

View Article and Find Full Text PDF

Brain arteriovenous malformations (bAVMs) are focal vascular lesions composed of abnormal vascular channels without an intervening capillary network. As a result, high-pressure arterial blood shunts directly into the venous outflow system. These high-flow, low-resistance shunts are composed of dilated, tortuous, and fragile vessels, which are prone to rupture.

View Article and Find Full Text PDF

Collateral arteries may act as natural bypasses that reduce hypoperfusion after a coronary blockage. 3D imaging of neonatal and adult mouse hearts, plus human fetal and diseased adult hearts, is now used to computationally predict flow within the heart, and understand the cardioprotective role of collateral arteries in vivo.

View Article and Find Full Text PDF

Microglia are key mediators of inflammatory responses within the brain, as they regulate pro-inflammatory responses while also limiting neuroinflammation via reparative phagocytosis. Thus, identifying genes that modulate microglial function may reveal novel therapeutic interventions for promoting better outcomes in diseases featuring extensive inflammation, such as stroke. To facilitate identification of potential mediators of inflammation, we performed single-cell RNA sequencing of aged mouse brains following stroke and found that was significantly up-regulated, particularly in microglia.

View Article and Find Full Text PDF

Tissue clearing for whole organ cell profiling has revolutionized biology and imaging for exploration of organs in three-dimensional space without compromising tissue architecture. But complicated, laborious procedures, or expensive equipment, as well as the use of hazardous, organic solvents prevent the widespread adoption of these methods. Here, we report a simple and rapid tissue clearing method, EZ Clear, that can clear whole adult mouse organs in 48 hr in just three simple steps.

View Article and Find Full Text PDF

Brain arteriovenous malformations (AVMs) are a disorder wherein abnormal, enlarged blood vessels connect arteries directly to veins, without an intervening capillary bed. AVMs are one of the leading causes of hemorrhagic stroke in children and young adults. Most human sporadic brain AVMs are associated with genetic activating mutations in the KRAS gene.

View Article and Find Full Text PDF

Abnormal hematopoiesis advances cardiovascular disease by generating excess inflammatory leukocytes that attack the arteries and the heart. The bone marrow niche regulates hematopoietic stem cell proliferation and hence the systemic leukocyte pool, but whether cardiovascular disease affects the hematopoietic organ's microvasculature is unknown. Here we show that hypertension, atherosclerosis and myocardial infarction (MI) instigate endothelial dysfunction, leakage, vascular fibrosis and angiogenesis in the bone marrow, altogether leading to overproduction of inflammatory myeloid cells and systemic leukocytosis.

View Article and Find Full Text PDF

Establishing a functional circulatory system is required for post-implantation development during murine embryogenesis. Previous studies in loss-of-function mouse models showed that FOXO1, a Forkhead family transcription factor, is required for yolk sac (YS) vascular remodeling and survival beyond embryonic day (E) 11. Here, we demonstrate that at E8.

View Article and Find Full Text PDF

Human genetic studies identified a strong association between loss of function mutations in RBFOX2 and hypoplastic left heart syndrome (HLHS). There are currently no Rbfox2 mouse models that recapitulate HLHS. Therefore, it is still unknown how RBFOX2 as an RNA binding protein contributes to heart development.

View Article and Find Full Text PDF

While changes in MeCP2 dosage cause Rett syndrome (RTT) and duplication syndrome (MDS), its transcriptional regulation is poorly understood. Here, we identified six putative noncoding regulatory elements of , two of which are conserved in humans. Upon deletion in mice and human iPSC-derived neurons, these elements altered RNA and protein levels in opposite directions and resulted in a subset of RTT- and MDS-like behavioral deficits in mice.

View Article and Find Full Text PDF

Background: Glioblastoma is the most common and aggressive type of primary brain tumor, as most patients succumb to the disease less than two years after diagnosis. Critically, studies demonstrate that glioma recruits surrounding blood vessels, while some work suggests that tumor stem cells themselves directly differentiate into endothelial cells, yet the molecular and cellular dynamics of the endothelium in glioma are poorly characterized. The goal of this study was to establish molecular and morphological benchmarks for tumor associated vessels (TAVs) and tumor derived endothelial cells (TDECs) during glioblastoma progression.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers previously identified mutations in the KRAS gene linked to brain arteriovenous malformations (AVMs), but the role of these mutations in creating lesions and the impact of active KRAS signaling remains unclear.
  • The study aimed to create in vivo models in mice and zebrafish to examine the effects of KRAS mutations on endothelial cells, discovering that these mutations can cause the formation of AVMs through changes in cell structure and connections between arteries and veins.
  • The findings indicate that active KRAS is sufficient for AVM formation and that targeting MEK signaling could be a potential treatment strategy, as KRAS-induced AVMs in zebrafish can be reversed through specific interventions.
View Article and Find Full Text PDF

During the growth of lymphatic vessels (lymphangiogenesis), lymphatic endothelial cells (LECs) at the growing front sprout by forming filopodia. Those tip cells are not exposed to circulating lymph, as they are not lumenized. In contrast, LECs that trail the growing front are exposed to shear stress, become quiescent, and remodel into stable vessels.

View Article and Find Full Text PDF

The lung microvasculature is essential for gas exchange and commonly considered homogeneous. We show that VEGFA from the epithelium is required for a distinct endothelial cell (EC) population in the mouse lung. Vegfa is predominantly expressed by alveolar type 1 (AT1) cells and locally required to specify a subset of ECs.

View Article and Find Full Text PDF

Recent advances in three-dimensional (3D) fluorescence microscopy offer the ability to image the entire vascular network in entire organs, or even whole animals. However, these imaging modalities rely on either endogenous fluorescent reporters or involved immunohistochemistry protocols, as well as optical clearing of the tissue and refractive index matching. Conversely, X-ray-based 3D imaging modalities, such as micro CT, can image non-transparent samples, at high resolution, without requiring complicated or expensive immunolabeling and clearing protocols, or fluorescent reporters.

View Article and Find Full Text PDF

The zebrafish Danio rerio is a powerful model system to study the genetics of development and disease. However, maintenance of zebrafish husbandry records is both time intensive and laborious, and a standardized way to manage and track the large amount of unique lines in a given laboratory or centralized facility has not been embraced by the field. Here, we present FishNET, an intuitive, open-source, relational database for managing data and information related to zebrafish husbandry and maintenance.

View Article and Find Full Text PDF

The gene encodes a homeobox transcription factor that is required for mammalian development. Disruption of expression in humans causes congenital heart diseases and is associated with atrial fibrillation; however, the cellular and molecular processes dictated by during cardiac ontogeny remain unclear. To characterize the role of during murine heart development we sequenced over 75,000 single cardiac cell transcriptomes between two key developmental timepoints in control and null embryos.

View Article and Find Full Text PDF

Background: Brain arteriovenous malformations (BAVM) represent a congenital anomaly of the cerebral vessels with a prevalence of 10-18/100 000. BAVM is the leading aetiology of intracranial haemorrhage in children. Our objective was to identify gene variants potentially contributing to disease and to better define the molecular aetiology underlying non-syndromic sporadic BAVM.

View Article and Find Full Text PDF

During development, progenitors progress through transition states. The cardiac epicardium contains progenitors of essential non-cardiomyocytes. The Hippo pathway, a kinase cascade that inhibits the Yap transcriptional co-factor, controls organ size in developing hearts.

View Article and Find Full Text PDF

Canonical Notch signaling requires the presence of a membrane bound ligand and a corresponding transmembrane Notch receptor. Receptor engagement induces multiple proteolytic cleavage events culminating in the nuclear accumulation of the Notch intracellular domain and its binding to a transcriptional co-factor to mediate gene expression. Notch signaling networks are essential regulators of vascular patterning and angiogenesis, as well as myriad other biological processes.

View Article and Find Full Text PDF

Background: Sporadic arteriovenous malformations of the brain, which are morphologically abnormal connections between arteries and veins in the brain vasculature, are a leading cause of hemorrhagic stroke in young adults and children. The genetic cause of this rare focal disorder is unknown.

Methods: We analyzed tissue and blood samples from patients with arteriovenous malformations of the brain to detect somatic mutations.

View Article and Find Full Text PDF