Publications by authors named "Joshua Woods"

Thorium-227 (Th) is an α-emitting radionuclide currently under investigation for targeted alpha therapy. Available chelators used for this isotope suffer from challenging multistep syntheses. Here, we present the synthesis and preclinical evaluation of a novel bifunctional chelator, SCN-Bn-DOTHOPO, which contains an isothiocyanate group that is suitable for conjugation to biological molecules.

View Article and Find Full Text PDF

Wireless communication technologies for bioelectronic implants enable remote monitoring for diagnosis and adaptive therapeutic intervention without the constraints of wired connections. However, wireless data uplink from millimeter-scale devices deep in the body struggles to achieve low power consumption while maintaining large misalignment tolerances. Here, we report a passive wireless backscatter communication system based on magnetoelectric transducers that consumes less than 0.

View Article and Find Full Text PDF

Miniature bioelectronic implants promise revolutionary therapies for cardiovascular and neurological disorders. Wireless power transfer (WPT) is a significant method for miniaturization, eliminating the need for bulky batteries in devices. Despite successful demonstrations of millimetric battery free implants in animal models, the robustness and efficiency of WPT are known to degrade significantly under misalignment incurred by body movements, respiration, heart beating, and limited control of implant orientation during surgery.

View Article and Find Full Text PDF

Minimally invasive neural interfaces can be used to diagnose, manage and treat many disorders, with reduced risks of surgical complications. However, endovascular probes lack access to key cortical, subcortical and spinal targets, and are not typically explantable after endothelialization. Here we report the development and testing, in sheep, of endocisternal neural interfaces that approach brain and spinal cord targets through inner and outer spaces filled with cerebrospinal fluid.

View Article and Find Full Text PDF

We report the synthesis and characterization of the macrocyclic californium derivative Na[Cf(HO)(DOTA)] (DOTA = 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetate), , which was studied in comparison to its dysprosium counterpart, Na[Dy(HO)(DOTA)], . Divergent spectroscopic and magnetic behaviors were observed between and . Based upon spectroscopic measurements, we propose that accessible 5f → 6d transitions (potentially operating in tandem with charge-transfer transitions) are the major contributors to the observed broadband photoluminescence in .

View Article and Find Full Text PDF

mRNA vaccines were highly effective in response to the COVID-19 pandemic, making them an attractive platform to address cancers and other infectious diseases. Many new mRNA vaccines in development are multivalent, which represents a difficulty for the standard assays commonly used to characterize the critical quality attributes of monovalent formulations. Here, we present a multiplexed analytical tool with nucleic acid microarray technology using the VaxArray platform that measures the identity and quantity of mono- and multivalent mixtures of naked mRNA and mRNA encapsulated in lipid nanoparticle formulations in under 2 h without any additional preparation steps, such as extraction or RT-PCR.

View Article and Find Full Text PDF
Article Synopsis
  • Miniature bioelectronic implants could enhance our ability to monitor and treat diseases by providing precise measurements and stimulation across the body’s physiological systems, like the heart and brain.
  • A significant hurdle in developing these implant networks is the inefficient transfer of wireless power and data through biological tissues, which can worsen with more implants.
  • This research introduces magnetoelectric wireless transfer, allowing for multiple implants (from 1 to 6) to communicate more effectively, thus paving the way for advanced electronic medicine using scalable closed-loop networks of bioelectronic devices.
View Article and Find Full Text PDF

Curium's stable redox chemistry and ability to emit strong metal-based luminescence make it uniquely suitable for spectroscopic studies among the actinide series. Targeted ligand and coordination compound design can support both fundamental electronic structure studies and industrial safeguards with the identification of unique spectroscopic signatures. However, limited availability, inherent radioactive hazards, and arduous purifications have long inhibited such investigations of this element.

View Article and Find Full Text PDF

Wireless minimally invasive bioelectronic implants enable a wide range of applications in healthcare, medicine, and scientific research. Magnetoelectric (ME) wireless power transfer (WPT) has emerged as a promising approach for powering miniature bio-implants because of its remarkable efficiency, safety limit, and misalignment tolerance. However, achieving low-power and high-quality uplink communication using ME remains a challenge.

View Article and Find Full Text PDF
Article Synopsis
  • Amidate-based ligands create 8-coordinate complexes with tetravalent Neptunium (Np) and Plutonium (Pu), enabling comparisons among early actinides via NMR spectroscopy and single crystal X-ray diffraction.
  • Controlled thermolysis is used to remove volatile ligands while preserving metal-oxygen bonds, resulting in pure NpO and PuO materials.
  • This research provides a consistent approach for producing high-purity actinide compounds, beneficial for nuclear nonproliferation, forensic analysis, and fundamental scientific research.
View Article and Find Full Text PDF

The first example of circularly polarized luminescence (CPL) from a molecular americium (Am) complex is reported. Coordination of Am(III) by a combination of thenoyltrifluoroacetonate and a chiral diphosphine oxide ligand yielded a complex with strong sensitized metal-centered luminescence. The energy transfer process for sensitization appears to occur via a unique resonant pathway, which results in the removal of the overlap between ligand phosphorescence and sensitized Am luminescence that has often been observed.

View Article and Find Full Text PDF

Targeted alpha therapy (TAT) pairs the specificity of antigen targeting with the lethality of alpha particles to eradicate cancerous cells. Actinium-225 [Ac; t = 9.920(3) days] is an alpha-emitting radioisotope driving the next generation of TAT radiopharmaceuticals.

View Article and Find Full Text PDF

Hydrogen sulfide (HS) is an endogenously produced gasotransmitter involved in many physiological processes that are integral to proper cellular functioning. Due to its profound anti-inflammatory and antioxidant properties, HS plays important roles in preventing inflammatory skin disorders and improving wound healing. Transdermal HS delivery is a therapeutically viable option for the management of such disorders.

View Article and Find Full Text PDF

Miniaturized neuromodulation systems could improve the safety and reduce the invasiveness of bioelectronic neuromodulation. However, as implantable bioelectronic devices are made smaller, it becomes difficult to store enough power for long-term operation in batteries. Here, we present a battery-free epidural cortical stimulator that is only 9 millimeters in width yet can safely receive enough wireless power using magnetoelectric antennas to deliver 14.

View Article and Find Full Text PDF

Upconverting nanoparticles (UCNPs) exhibit unique nonlinear optical properties that can be harnessed in microscopy, sensing, and photonics. However, forming high-resolution nano- and micropatterns of UCNPs with large packing fractions is still challenging. Additionally, there is limited understanding of how nanoparticle patterning chemistries are affected by the particle size.

View Article and Find Full Text PDF

Background: An increasing number of adults over 60 years old are presenting with requests for treatment of attention-deficit/hyperactivity disorder (ADHD). However, the prevalence of ADHD in older adults in geriatrics is unknown. Further, comorbid bipolar disorder and adult ADHD are likely underrecognized with many patients only receiving treatment for one of these conditions.

View Article and Find Full Text PDF

Forced degradation, also known as stress testing, is used throughout pharmaceutical development for many purposes including assessing the comparability of biopharmaceutical products according to ICH Guideline Q5E. These formal comparability studies, the results of which are submitted to health authorities, investigate potential impacts of manufacturing process changes on the quality, safety, and efficacy of the drug. Despite the wide use of forced degradation in comparability assessments, detailed guidance on the design and interpretation of such studies is scarce.

View Article and Find Full Text PDF

Purpose: While significant progress in metastatic breast cancer (MBC) treatment has prolonged survival and improved prognosis, there remain substantial gaps in providing patient-centered supportive care. The specific care delivery needs for metastatic cancer differ from that of early-stage cancer due to the incurable nature and lifelong duration of the condition. The objective of this study was to assess how patients living with MBC would re-imagine cancer care delivery.

View Article and Find Full Text PDF

Thorium-227 (Th) is an α-emitting radionuclide that has shown preclinical and clinical promise for use in targeted α-therapy (TAT), a type of molecular radiopharmaceutical treatment that harnesses high energy α particles to eradicate cancerous lesions. Despite these initial successes, there still exists a need for bifunctional chelators that can stably bind thorium in vivo. Toward this goal, we have prepared two macrocyclic chelators bearing 1,2-hydroxypyridinone groups.

View Article and Find Full Text PDF

The mammalian protein siderocalin binds bacterial siderophores and their iron complexes through cation-π and electrostatic interactions, but also displays high affinity for hydroxypyridinone complexes of trivalent lanthanides and actinides. In order to circumvent synthetic challenges, the use of siderocalin-antibody fusion proteins is explored herein as an alternative targeting approach for precision delivery of trivalent radiometals. We demonstrate the viability of this approach , using the theranostic pair Y (β, = 64 h)/Y (β, = 14.

View Article and Find Full Text PDF

The COVID-19 pandemic substantially impacted the delivery of oncology care, particularly for individuals with metastatic cancers. The objective of this study was to qualitatively evaluate the impacts of COVID-19 on metastatic breast cancer (MBC) care among patients. This study consisted of 36 semi-structured qualitative interviews conducted virtually with people living with MBC, who were members of a patient support organization called Project Life.

View Article and Find Full Text PDF

In this paper, acoustic, dynamic and static strain variations along a steel I-beam generated by an impact load are reconstructed simultaneously within a single measurement. Based on the chirped pulse φ-OTDR system with the single-shot measurement technique, both a higher strain-sensing resolution and a higher measurable vibration frequency are achieved. In addition, a weak fiber Bragg gratings array (WFBGA) with enhanced Rayleigh reflection is employed as a sensor, providing high signal-to-noise ratio Rayleigh traces, resulting in lower measurement uncertainty.

View Article and Find Full Text PDF

Dysregulation of mitochondrial calcium uptake mediated by the mitochondrial calcium uniporter (MCU) is implicated in several pathophysiological conditions. Dinuclear ruthenium complexes are effective inhibitors of the MCU and have been leveraged as both tools to study mitochondrial calcium dynamics and potential therapeutic agents. In this study, we report the synthesis and characterization of Os245 ([Os(μ-N)(NH)Cl]) which is the osmium-containing analogue of our previously reported ruthenium-based inhibitor Ru265.

View Article and Find Full Text PDF

Shrinkage is an important component of the behaviour of reinforced concrete (RC) structures, however, the number of variables that affect shrinkage make it a complex time-dependent phenomenon. Additionally, as new concrete materials with lower embodied carbon gain popularity, there is a need for an in-depth understanding into their shrinkage behaviour before they can be widely adopted by industry. Currently, the shrinkage behaviour of concrete is studied using discrete measurements on small-scale unrestrained prisms.

View Article and Find Full Text PDF