J Allergy Clin Immunol
October 2024
Background: Mas-related G protein-coupled receptor X2 (MRGPRX2) is a promiscuous receptor on mast cells that mediates IgE-independent degranulation and has been implicated in multiple mast cell-mediated disorders, including chronic urticaria, atopic dermatitis, and pain disorders. Although it is a promising therapeutic target, few potent, selective, small molecule antagonists have been identified, and functional effects of human MRGPRX2 inhibition have not been evaluated in vivo.
Objective: We sought to identify and characterize novel, potent, and selective orally active small molecule MRGPRX2 antagonists for potential treatment of mast cell-mediated disease.
Insulin resistance is a major factor in obesity-linked type 2 diabetes. PPARγ is a master regulator of adipogenesis, and small molecule agonists, termed thiazolidinediones, are potent therapeutic insulin sensitizers. Here, we studied the role of transcriptional co-activator with PDZ-binding motif (TAZ) as a transcriptional co-repressor of PPARγ.
View Article and Find Full Text PDFThe composition of the gastrointestinal microbiota and associated metabolites changes dramatically with diet and the development of obesity. Although many correlations have been described, specific mechanistic links between these changes and glucose homeostasis remain to be defined. Here we show that blood and intestinal levels of the microbiota-produced formyl peptide, formyl-methionyl-leucyl-phenylalanine, are elevated in high-fat diet-induced obese mice.
View Article and Find Full Text PDFThe nature of obesity-associated islet inflammation and its impact on β cell abnormalities remains poorly defined. Here, we explore immune cell components of islet inflammation and define their roles in regulating β cell function and proliferation. Islet inflammation in obese mice is dominated by macrophages.
View Article and Find Full Text PDFThe activation of Kupffer cells (KCs) and monocyte-derived recruited macrophages (McMΦs) in the liver contributes to obesity-induced insulin resistance and type 2 diabetes. Mice with diet-induced obesity (DIO mice) treated with chromogranin A peptide catestatin (CST) showed several positive results. These included decreased hepatic/plasma lipids and plasma insulin, diminished expression of gluconeogenic genes, attenuated expression of proinflammatory genes, increased expression of anti-inflammatory genes in McMΦs, and inhibition of the infiltration of McMΦs resulting in improvement of insulin sensitivity.
View Article and Find Full Text PDFThe worldwide obesity epidemic has emerged as a major cause of insulin resistance and Type 2 diabetes. Chronic tissue inflammation is a well-recognized feature of obesity, and the field of immunometabolism has witnessed many advances in recent years. Here, we review the major features of our current understanding with respect to chronic obesity-related inflammation in metabolic tissues and focus on how these inflammatory changes affect insulin sensitivity, insulin secretion, food intake, and glucose homeostasis.
View Article and Find Full Text PDFMiRNAs are regulatory molecules that can be packaged into exosomes and secreted from cells. Here, we show that adipose tissue macrophages (ATMs) in obese mice secrete miRNA-containing exosomes (Exos), which cause glucose intolerance and insulin resistance when administered to lean mice. Conversely, ATM Exos obtained from lean mice improve glucose tolerance and insulin sensitivity when administered to obese recipients.
View Article and Find Full Text PDFChromogranin A (CgA) is a prohormone and a granulogenic factor that regulates secretory pathways in neuroendocrine tissues. In β-cells of the endocrine pancreas, CgA is a major cargo in insulin secretory vesicles. The impact of CgA deficiency on the formation and exocytosis of insulin vesicles is yet to be investigated.
View Article and Find Full Text PDFTissue inflammation is a key component of obesity-induced insulin resistance, with a variety of immune cell types accumulating in adipose tissue. Here, we have demonstrated increased numbers of B2 lymphocytes in obese adipose tissue and have shown that high-fat diet-induced (HFD-induced) insulin resistance is mitigated in B cell-deficient (Bnull) mice. Adoptive transfer of adipose tissue B2 cells (ATB2) from wild-type HFD donor mice into HFD Bnull recipients completely restored the effect of HFD to induce insulin resistance.
View Article and Find Full Text PDFIn obesity, macrophages and other immune cells accumulate in insulin target tissues, promoting a chronic inflammatory state and insulin resistance. Galectin-3 (Gal3), a lectin mainly secreted by macrophages, is elevated in both obese subjects and mice. Administration of Gal3 to mice causes insulin resistance and glucose intolerance, whereas inhibition of Gal3, through either genetic or pharmacologic loss of function, improved insulin sensitivity in obese mice.
View Article and Find Full Text PDFThe intestinal microbiome can regulate host energy homeostasis and the development of metabolic disease. Here we identify GPR43, a receptor for bacterially produced short-chain fatty acids (SCFAs), as a modulator of microbiota-host interaction. β-Cell expression of GPR43 and serum levels of acetate, an endogenous SCFA, are increased with a high-fat diet (HFD).
View Article and Find Full Text PDFChromogranin A knockout (Chga-KO) mice exhibit enhanced insulin sensitivity despite obesity. Here, we probed the role of the chromogranin A-derived peptide pancreastatin (PST: CHGA(273-301)) by investigating the effect of diet-induced obesity (DIO) on insulin sensitivity of these mice. We found that on a high-fat diet (HFD), Chga-KO mice (KO-DIO) remain more insulin sensitive than wild-type DIO (WT-DIO) mice.
View Article and Find Full Text PDFSmall-molecule ligands of nuclear hormone receptors (NHRs) govern the transcriptional regulation of metazoan development, cell differentiation, and metabolism. However, the physiological ligands of many NHRs remain poorly characterized, primarily due to lack of robust analytical techniques. Using comparative metabolomics, we identified endogenous steroids that act as ligands of the C.
View Article and Find Full Text PDFHormone-gated nuclear receptors (NRs) are conserved transcriptional regulators of metabolism, reproduction, and homeostasis. Here we show that C. elegans NHR-8 NR, a homolog of vertebrate liver X and vitamin D receptors, regulates nematode cholesterol balance, fatty acid desaturation, apolipoprotein production, and bile acid metabolism.
View Article and Find Full Text PDFAlthough the gonad primarily functions in procreation, it also affects animal life span. Here, we show that removal of the Caenorhabditis elegans germ line triggers a switch in the regulatory state of the organism to promote longevity, co-opting components involved in larval developmental timing circuits. These components include the DAF-12 steroid receptor, which is involved in the larval stage two-to-stage three (L2-L3) transition and up-regulates members of the let-7 microRNA (miRNA) family.
View Article and Find Full Text PDFEndogenous small molecule metabolites that regulate animal longevity are emerging as a novel means to influence health and life span. In C. elegans, bile acid-like steroids called the dafachronic acids (DAs) regulate developmental timing and longevity through the conserved nuclear hormone receptor DAF-12, a homolog of mammalian sterol-regulated receptors LXR and FXR.
View Article and Find Full Text PDFBile acids are cholesterol-derived signaling molecules that regulate mammalian metabolism through sterol-sensing nuclear receptor transcription factors. In C. elegans, bile acid-like steroids called dafachronic acids (DAs) control developmental timing and longevity by activating the nuclear receptor DAF-12.
View Article and Find Full Text PDFSterol metabolites are critical signaling molecules that regulate metabolism, development, and homeostasis. Oxysterols, bile acids (BAs), and steroids work primarily through cognate sterol-responsive nuclear hormone receptors to control these processes through feed-forward and feedback mechanisms. These signaling pathways are conserved from simple invertebrates to mammals.
View Article and Find Full Text PDF