While there are many theories and a variety of innovative datasets contributing to our understanding of the mechanism generating root pressure in vascular plants, we are still unable to produce a specific cellular mechanism for any species. To discover these mechanisms, we used RNA-Seq to explore differentially expressed genes in three different tissues between individual Zea mays plants expressing root pressure and those producing none. Working from the perspective that roots cells are utililizing a combination of osmotic exudation and hydraulic pressure mechanisms to generate positively-pressured flow of water into the xylem from the soil, we hypothesized that differential expression analysis would yield candidate genes coding for membrane transporters, ion channels, ATPases, and hormones with clear relevance to root pressure generation.
View Article and Find Full Text PDFRoot pressure, also manifested as profusive sap flowing from cut stems, is a phenomenon in some species that has perplexed biologists for much of the last century. It is associated with increased crop production under drought, but its function and regulation remain largely unknown. In this study, we investigated the initiation, mechanisms, and possible adaptive function of root pressure in six genotypes of during a drought experiment in the greenhouse.
View Article and Find Full Text PDF