Analysis of nutrient balance at the watershed scale, including for phosphorus (P), is typically accomplished using aggregate input datasets, resulting in an inability to capture the variability of P status across the study region. This study presents a set of methods to predict and visualize partial P mass balance, soil P saturation ratio (PSR), and soil test P for agricultural parcels across a watershed in the Lake Champlain Basin (Vermont, USA) using granular, field-level data. K-means cluster analyses were used to group agricultural parcels by soil texture, average slope, and crop type.
View Article and Find Full Text PDFGreen stormwater infrastructure like bioretention can reduce stormwater runoff volumes and trap sediments and pollutants. However, bioretention soil media can be both a sink and source of phosphorus (P). We investigated the potential tradeoff between hydraulic conductivity and P sorption capacity in drinking water treatment residuals (DWTRs), with implications for bioretention media design.
View Article and Find Full Text PDFSilage bunker runoff can be a very polluting substance and is increasingly being treated by vegetative treatment areas (VTAs), but little information exists regarding nutrient removal performance of systems receiving this wastewater. Nutrient transport through the shallow subsurface of three VTAs (i.e.
View Article and Find Full Text PDFVegetative treatment areas (VTAs) are commonly being used as an alternative method of agricultural process wastewater treatment. However, it is also apparent that to completely prevent discharge of pollutants to the surrounding environment, settling of particulates and bound constituents from overland flow through VTAs is not sufficient. For effective remediation of dissolved agricultural pollutants, VTAs must infiltrate incoming wastewater.
View Article and Find Full Text PDF