The subthalamic nucleus (STN) is traditionally thought to restrict movement. Lesion or prolonged STN inhibition increases movement vigor and propensity, while optogenetic excitation has opposing effects. However, STN neurons often exhibit movement-related increases in firing.
View Article and Find Full Text PDFThe subthalamic nucleus (STN) is traditionally thought to restrict movement. Lesion or prolonged STN inhibition increases movement vigor and propensity, while ontogenetic excitation typically has opposing effects. Subthalamic and motor activity are also inversely correlated in movement disorders.
View Article and Find Full Text PDFThe debilitating psychomotor symptoms of Huntington's disease (HD) are linked partly to degeneration of the basal ganglia indirect pathway. At early symptomatic stages, before major cell loss, indirect pathway neurons exhibit numerous cellular and synaptic changes in HD and its models. However, the impact of these alterations on circuit activity remains poorly understood.
View Article and Find Full Text PDFKey Points: Reciprocally connected GABAergic external globus pallidus (GPe) and glutamatergic subthalamic nucleus (STN) neurons form a key network within the basal ganglia. In Parkinson's disease and its models, abnormal rates and patterns of GPe-STN network activity are linked to motor dysfunction. Using cell class-specific optogenetic identification and inhibition during cortical slow-wave activity and activation, we report that, in dopamine-depleted mice, (1) D2 dopamine receptor expressing striatal projection neurons (D2-SPNs) discharge at higher rates, especially during cortical activation, (2) prototypic parvalbumin-expressing GPe neurons are excessively patterned by D2-SPNs even though their autonomous activity is upregulated, (3) despite being disinhibited, STN neurons are not hyperactive, and (4) STN activity opposes striatopallidal patterning.
View Article and Find Full Text PDFKey Points: Neural synchrony between the subthalamic nucleus (STN) and cortex is critical for proper information processing in basal ganglia circuits. Using in vivo extracellular recordings in urethane-anaesthetized mice, we demonstrate that single units and local field potentials from the STN exhibit oscillatory entrainment to low-frequency (0.5-4 Hz) rhythms when the cortex is in a synchronized state.
View Article and Find Full Text PDFHuntington's disease (HD) is an autosomal dominant neurodegenerative disorder that results in motor, cognitive and psychiatric abnormalities. Dysfunction in neuronal processing between the cortex and the basal ganglia is fundamental to the onset and progression of the HD phenotype. The corticosubthalamic hyperdirect pathway plays a crucial role in motor selection and blockade of neuronal activity in the subthalamic nucleus (STN) results in hyperkinetic movement abnormalities, similar to the motor symptoms associated with HD.
View Article and Find Full Text PDFHuntington's disease (HD) is a genetic neurodegenerative disorder that is characterized by the progressive onset of cognitive, psychiatric, and motor symptoms. In parallel, the neuropathology of HD is characterized by progressive loss of projection neurons in cortex and striatum; striatal cholinergic interneurons are relatively spared. Nonetheless, there is evidence that striatal acetylcholine (ACh) function is altered in HD.
View Article and Find Full Text PDFHuntington's disease (HD) is characterized by numerous alterations within the corticostriatal circuitry. The striatum is innervated by a dense array of dopaminergic (DA) terminals and these DA synapses are critical to the proper execution of motor functions. As motor disturbances are prevalent in HD we examined DA neurotransmission in the striatum in transgenic (tg) murine models of HD.
View Article and Find Full Text PDF