Publications by authors named "Joshua Tamayo"

Autonomous out-of-equilibrium agents or cells in suspension are ubiquitous in biology and engineering. Turning chemical energy into mechanical stress, they generate activity in their environment, which may trigger spontaneous large-scale dynamics. Often, these systems are composed of multiple populations that may reflect the coexistence of multiple species, differing phenotypes, or chemically varying agents in engineered settings.

View Article and Find Full Text PDF

Mucus, composed significantly of glycosylated mucins, is a soft and rheologically complex material that lines respiratory, reproductive, and gastrointestinal tracts in mammals. Mucus may present as a gel, as a highly viscous fluid, or as a viscoelastic fluid. Mucus acts as a barrier to the transport of harmful microbes and inhaled atmospheric pollutants to underlying cellular tissue.

View Article and Find Full Text PDF

Allergies to cow's milk are very common and can present as life-threatening anaphylaxis. Consequently, food labeling legislation mandates that foods containing milk residues, including casein and/or β-lactoglobulin, provide an indication of such on the product label. Because contamination with either component independent of the other can occur during food manufacturing, effective allergen management measures for containment of milk residues necessitates the use of dual screening methods.

View Article and Find Full Text PDF

Quantum dots are highly fluorescent and photostable, making them excellent tools for imaging. When using these quantum dots in cells and animals, however, intracellular biothiols (such as glutathione and cysteine) can degrade the quantum dot monolayer, compromising function. Here, we describe a label-free method to quantify the intracellular stability of monolayers on quantum dot surfaces that couples laser desorption/ionization mass spectrometry with inductively coupled plasma mass spectrometry.

View Article and Find Full Text PDF