Chronic lower back pain is the leading cause of disability worldwide, generating a socioeconomic cost of over $100 billion annually in the United States. Among the prominent causes of low back pain (LBP) is degeneration of the intervertebral disk (IVD), a condition known as degenerative disk disease (DDD). Despite the prevalence of DDD and multiple studies demonstrating its relationship with LBP, the mechanisms by which it contributes to pain remain unknown.
View Article and Find Full Text PDFLow back pain (LBP) ranks among the leading causes of disability worldwide and generates a tremendous socioeconomic cost. Disc degeneration, a leading contributor to LBP, can be characterized by the breakdown of the extracellular matrix of the intervertebral disc (IVD), disc height loss, and inflammation. The inflammatory cytokine tumor necrosis factor α (TNF-α) has multiple signaling pathways, including proinflammatory signaling through tumor necrosis factor receptor 1 superfamily, member 1a (TNFR1 or TNFRSF1A), and has been implicated as a primary mediator of disc degeneration.
View Article and Find Full Text PDFLow back pain (LBP) ranks among the leading causes of disability worldwide and generates a tremendous socioeconomic cost. Disc degeneration, a leading contributor to LBP, can be characterized by the breakdown of the extracellular matrix of the intervertebral disc (IVD), disc height loss, and inflammation. The inflammatory cytokine TNF-α has multiple pathways and has been implicated as a primary mediator of disc degeneration.
View Article and Find Full Text PDFBackground: Low back pain is a major contributor to disability worldwide and generates a tremendous socioeconomic impact. The degenerative intervertebral disc (IVD) has been hypothesized to contribute to discogenic pain by sensitizing nociceptive neurons innervating the disc to stimuli that is nonpainful in healthy patients. Previously, we demonstrated the ability of degenerative IVDs to sensitize neurons to mechanical stimuli; however, elucidation of degenerative IVDs discogenic pain mechanisms is required to develop therapeutic strategies that directly target these mechanisms.
View Article and Find Full Text PDFLow back pain is among the leading causes of disability worldwide. The degenerative intervertebral disc (IVD) environment contains pathologically high levels of inflammatory cytokines and acidic pH hypothesized to contribute to back pain by sensitizing nociceptive neurons to stimuli that would not be painful in healthy patients. We hypothesized that the degenerative IVD environment drives discogenic pain by sensitizing nociceptive neurons to mechanical loading.
View Article and Find Full Text PDFBack pain is the leading cause of disability worldwide and contributes to significant socioeconomic impacts. It has been hypothesized that the degenerative intervertebral disc (IVD) contributes to back pain by sensitizing nociceptive neurons innervating the IVD to stimuli that would not be painful to healthy patients. However, the inflammatory signaling networks mediating this sensitization remain poorly understood.
View Article and Find Full Text PDFBack pain is a major contributor to disability and has significant socioeconomic impacts worldwide. The degenerative intervertebral disc (IVD) has been hypothesized to contribute to back pain, but a better understanding of the interactions between the degenerative IVD and nociceptive neurons innervating the disc and treatment strategies that directly target these interactions is needed to improve our understanding and treatment of back pain. We investigated degenerative IVD-induced changes to dorsal root ganglion (DRG) neuron activity and utilized CRISPR epigenome editing as a neuromodulation strategy.
View Article and Find Full Text PDFMusculoskeletal diseases have been associated with inflammatory cytokine action, particularly action by TNF-α and IL-1β. These inflammatory cytokines promote apoptosis and senescence of cells in diseased tissue and extracellular matrix breakdown. Stem cell-based therapies are being considered for the treatment of musculoskeletal diseases, but the presence of these inflammatory cytokines will have similar deleterious action on therapeutic cells delivered to these environments.
View Article and Find Full Text PDFUntil recently, the bladder urothelium had been thought of only as a physical barrier between urine and underlying bladder tissue. Recent studies, however, have demonstrated that the urothelium is sensitive to mechanical stimuli and responds by releasing signaling molecules (NO, ATP). This study sought to investigate the role of select ion channels in urothelial cell (UC) pressure mechanotransduction.
View Article and Find Full Text PDFPrevious studies demonstrated that the bladder exhibited severe tissue remodeling following spinal cord injury. In such pathological bladders, uninhibited non-voiding contractions subject bladder cells to cyclic oscillations of intravesical pressure. We hypothesize that cyclic pressure is a potential trigger for tissue remodeling in overactive bladder.
View Article and Find Full Text PDF