Publications by authors named "Joshua S Weinger"

The conversion of chemical energy into mechanical force by AAA+ (ATPases associated with diverse cellular activities) ATPases is integral to cellular processes, including DNA replication, protein unfolding, cargo transport and membrane fusion. The AAA+ ATPase motor cytoplasmic dynein regulates ciliary trafficking, mitotic spindle formation and organelle transport, and dissecting its precise functions has been challenging because of its rapid timescale of action and the lack of cell-permeable, chemical modulators. Here we describe the discovery of ciliobrevins, the first specific small-molecule antagonists of cytoplasmic dynein.

View Article and Find Full Text PDF

Kinesin-5, a widely conserved motor protein required for assembly of the bipolar mitotic spindle in eukaryotes, forms homotetramers with two pairs of motor domains positioned at opposite ends of a dumbbell-shaped molecule [1-3]. It has long been assumed that this configuration of motor domains is the basis of kinesin-5's ability to drive relative sliding of microtubules [2, 4, 5]. Recently, it was suggested that in addition to the N-terminal motor domain, kinesin-5 also has a nonmotor microtubule binding site in its C terminus [6].

View Article and Find Full Text PDF

Although assembly of the mitotic spindle is known to be a precisely controlled process, regulation of the key motor proteins involved remains poorly understood. In eukaryotes, homotetrameric kinesin-5 motors are required for bipolar spindle formation. Eg5, the vertebrate kinesin-5, has two modes of motion: an adenosine triphosphate (ATP)-dependent directional mode and a diffusive mode that does not require ATP hydrolysis.

View Article and Find Full Text PDF

Translation, the synthesis of proteins from individual amino acids based on genetic information, is a cornerstone biological process. During ribosomal protein synthesis, new peptide bonds form through aminolysis of the peptidyl-tRNA ester bond by the alpha-amino group of the A-site amino acid. The rate of this reaction is accelerated at least 10(7)-fold in the ribosome, but the catalytic mechanism has remained controversial.

View Article and Find Full Text PDF

The free 2'-3' cis-diol at the 3'-terminus of tRNA provides a unique juxtaposition of functional groups that play critical roles during protein synthesis. The translation process involves universally conserved chemistry at almost every stage of this multistep procedure, and the 2'- and 3'-OHs are in the immediate vicinity of chemistry at each step. The cis-diol contribution affects steps ranging from tRNA aminoacylation to peptide bond formation.

View Article and Find Full Text PDF

The ribosomal peptidyl transferase center is expected to be regiospecific with regard to its tRNA substrates, yet the ester linkages between the tRNA and the amino acid or peptide are susceptible to isomerization between the O2' and O3' hydroxyls of the terminal A76 ribose sugar. To establish which isomer of the P site tRNA ester is utilized by the ribosome, we prepared two nonisomerizable transition state inhibitors with either an A76 O2' or O3' linkage. Strong preferential binding to the O3' regioisomer indicates that the peptidyl transferase proceeds through a transition state with an O3'-linked peptide in the P-site.

View Article and Find Full Text PDF

The ribosome accelerates the rate of peptide bond formation by at least 10(7)-fold, but the catalytic mechanism remains controversial. Here we report evidence that a functional group on one of the tRNA substrates plays an essential catalytic role in the reaction. Substitution of the P-site tRNA A76 2' OH with 2' H or 2' F results in at least a 10(6)-fold reduction in the rate of peptide bond formation, but does not affect binding of the modified substrates.

View Article and Find Full Text PDF

All living cells are dependent on ribosomes to catalyze the peptidyl transfer reaction, by which amino acids are assembled into proteins. The previously studied peptidyl transferase transition state analog CC-dA-phosphate-puromycin (CCdApPmn) has important differences from the transition state, yet current models of the ribosomal active site have been heavily influenced by the properties of this molecule. One significant difference is the substitution of deoxyadenosine for riboadenosine at A76, which mimics the 3' end of a P-site tRNA.

View Article and Find Full Text PDF

Known sequence motifs containing key glycine residues can drive the homo-oligomerization of transmembrane helices. To find other motifs, a randomized library of transmembrane interfaces was generated in which glycine was omitted. The TOXCAT system, which measures transmembrane helix association in the Escherichia coli inner membrane, was used to select high-affinity homo-oligomerizing sequences in this library.

View Article and Find Full Text PDF