The American Society of Nephrology (ASN) Task Force on the Future of Nephrology was established in April 2022 in response to requests from the American Board of Internal Medicine and the Accreditation Council for Graduate Medical Education regarding training requirements in nephrology. Given recent changes in kidney care, ASN also charged the task force with reconsidering all aspects of the specialty's future to ensure that nephrologists are prepared to provide high-quality care for people with kidney diseases. The task force engaged multiple stakeholders to develop 10 recommendations focused on strategies needed to promote: ( 1 ) just, equitable, and high-quality care for people living with kidney diseases; ( 2 ) the value of nephrology as a specialty to nephrologists, the future nephrology workforce, the health care system, the public, and government; and ( 3 ) innovation and personalization of nephrology education across the scope of medical training.
View Article and Find Full Text PDFTwo heterozygous missense variants (G1 and G2) of Apolipoprotein L1 (APOL1) found in individuals of recent African ancestry can attenuate the severity of infection by some forms of Trypanosoma brucei. However, these two variants within a broader African haplotype also increase the risk of kidney disease in Americans of African descent. Although overexpression of either variant G1 or G2 causes multiple pathogenic changes in cultured cells and transgenic mouse models, the mechanism(s) promoting kidney disease remain unclear.
View Article and Find Full Text PDFBackground: The coronavirus disease 2019 (COVID-19) pandemic's effects on nephrology fellows' educational experiences, preparedness for practice, and emotional wellbeing are unknown.
Methods: We recruited current adult and pediatric fellows and 2020 graduates of nephrology training programs in the United States to participate in a survey measuring COVID-19's effects on their training experiences and wellbeing.
Results: Of 1005 nephrology fellows-in-training and recent graduates, 425 participated (response rate 42%).
Purpose Of Review: APOL1 nephropathy risk variants drive most of the excess risk of chronic kidney disease (CKD) seen in African Americans, but whether the same risk variants account for excess cardiovascular risk remains unclear. This mini-review highlights the controversies in the APOL1 cardiovascular field.
Recent Findings: In the past 10 years, our understanding of how APOL1 risk variants contribute to renal cytotoxicity has increased.
Cytoskeleton (Hoboken)
September 2017
Spindle formation in mammalian cells requires precise spatial and temporal regulation of the kinesin-5, Eg5, which generates outward force to establish spindle bipolarity. Our results demonstrate that Eg5 is phosphorylated in cultured cells by Src family kinases (SFKs) at three sites in the motor head: Y125, Y211, and Y231. Mutation of these sites diminishes motor activity in vitro, and replacement of endogenous Eg5 with phosphomimetic Y211 in LLC-Pk1 cells results in monopolar spindles, consistent with loss of Eg5 activity.
View Article and Find Full Text PDFWhile it is currently estimated that 40 to 50% of eukaryotic proteins are phosphorylated, little is known about the frequency and local effects of phosphorylation near pharmaceutical inhibitor binding sites. In this study, we investigated how frequently phosphorylation may affect the binding of drug inhibitors to target proteins. We examined the 453 non-redundant structures of soluble mammalian drug target proteins bound to inhibitors currently available in the Protein Data Bank (PDB).
View Article and Find Full Text PDFMitotic cell division is the most fundamental task of all living cells. Cells have intricate and tightly regulated machinery to ensure that mitosis occurs with appropriate frequency and high fidelity. A core element of this machinery is the kinesin-5 motor protein, which plays essential roles in spindle formation and maintenance.
View Article and Find Full Text PDFKinesin-like calmodulin binding protein (KCBP), a Kinesin-14 family motor protein, is involved in the structural organization of microtubules during mitosis and trichome morphogenesis in plants. The molecular mechanism of microtubule bundling by KCBP remains unknown. KCBP binding to microtubules is regulated by Ca(2+)-binding proteins that recognize its C-terminal regulatory domain.
View Article and Find Full Text PDFEg5 is a homotetrameric kinesin-5 motor protein that generates outward force on the overlapping, antiparallel microtubules (MTs) of the mitotic spindle. Upon binding an MT, an Eg5 dimer releases one ADP molecule, undergoes a slow (∼0.5 s(-1)) isomerization, and finally releases a second ADP, adopting a tightly MT-bound, nucleotide-free (APO) conformation.
View Article and Find Full Text PDFBackground: Teamwork is a fundamental aspect of many human activities, from business to art and from sports to science. Recent research suggest that team work is of crucial importance to cutting-edge scientific research, but little is known about how teamwork leads to greater creativity. Indeed, for many team activities, it is not even clear how to assign credit to individual team members.
View Article and Find Full Text PDFIn Drosophila melanogaster, p53 (Dmp53) is an important mediator of longevity. Expression of dominant-negative (DN) forms of Dmp53 in adult neurons, but not in muscle or fat body cells, extends lifespan. The lifespan of calorie-restricted flies is not further extended by simultaneously expressing DN-Dmp53 in the nervous system, indicating that a decrease in Dmp53 activity may be a part of the CR lifespan-extending pathway in flies.
View Article and Find Full Text PDF