Publications by authors named "Joshua Russo"

Androgen receptor (AR) splice variants, of which ARv7 is the most common, are increased in castration-resistant prostate cancer, but the extent to which they drive AR activity is unclear. We generated a subline of VCaP cells (VCaP16) that is resistant to the AR inhibitor enzalutamide (ENZ). AR activity in VCaP16 is driven by ARv7, independently of full-length AR (ARfl), and its cistrome and transcriptome mirror those of ARfl in VCaP cells.

View Article and Find Full Text PDF

Androgen receptor (AR) splice variants, of which ARv7 is the most common, are increased in prostate cancer (PC) that develops resistance to androgen signaling inhibitor drugs, but the extent to which these variants drive AR activity, and whether they have novel functions or dependencies, remain to be determined. We generated a subline of VCaP PC cells (VCaP16) that is resistant to the AR inhibitor enzalutamide (ENZ) and found that AR activity was independent of the full-length AR (ARfl), despite its continued high-level expression, and was instead driven by ARv7. The ARv7 cistrome and transcriptome in VCaP16 cells mirrored that of the ARfl in VCaP cells, although ARv7 chromatin binding was weaker, and strong ARv7 binding sites correlated with higher affinity ARfl binding sites across multiple models and clinical samples.

View Article and Find Full Text PDF

Background And Objectives: Men have higher morbidity and mortality from COVID-19 than women, possibly due to androgen receptor-regulated viral entry protein expression. This led to a clinical trial of androgen deprivation therapy (ADT), which has not shown a significant benefit in the outcomes among hospitalized male COVID-19 patients. The aim of this study was to explore biological explanations for the failure of ADT to mitigate clinical outcomes in men with severe COVID-19 by assessing the role of androgen in regulating viral entry protein expression in the upper and lower respiratory tract.

View Article and Find Full Text PDF
Article Synopsis
  • Therapies targeting the androgen receptor have improved outcomes for castration-sensitive prostate cancer, but the role of the AR splice variant-7 (AR-V7) as a biomarker in this context is not well understood.
  • The study evaluated methods to measure AR-V7 mRNA and protein in various prostate cancer models and found that AR-V7 levels were low in castration-sensitive cases compared to castration-resistant cases, with the efficacy of different antibodies varying.
  • Ultimately, the research suggests that AR-V7 is not currently a reliable predictive biomarker for treatment response in castration-sensitive prostate cancer and requires further validation before clinical application.
View Article and Find Full Text PDF

Unlabelled: Wnt signaling driven by genomic alterations in genes including APC and CTNNB, which encodes β-catenin, have been implicated in prostate cancer development and progression to metastatic castration-resistant prostate cancer (mCRPC). However, nongenomic drivers and downstream effectors of Wnt signaling in prostate cancer and the therapeutic potential of targeting this pathway in prostate cancer have not been fully established. Here we analyzed Wnt/β-catenin signaling in prostate cancer and identified effectors distinct from those found in other tissues, including aryl hydrocarbon receptor and RUNX1, which are linked to stem cell maintenance, and ROR1, a noncanonical Wnt5a coreceptor.

View Article and Find Full Text PDF

Androgen receptor (AR) in prostate cancer (PCa) can drive transcriptional repression of multiple genes including MYC, and supraphysiological androgen is effective in some patients. Here, we show that this repression is independent of AR chromatin binding and driven by coactivator redistribution, and through chromatin conformation capture methods show disruption of the interaction between the MYC super-enhancer within the PCAT1 gene and the MYC promoter. Conversely, androgen deprivation in vitro and in vivo increases MYC expression.

View Article and Find Full Text PDF

Introduction: The 2021 Coffey-Holden Prostate Cancer Academy (CHPCA) Meeting, "Prostate Cancer Research in the 21st Century," was held virtually, from June 24-25, 2021.

Methods: The CHPCA Meeting is organized by the Prostate Cancer Foundation as a unique discussion-oriented meeting focusing on critical topics in prostate cancer research envisioned to bridge the next major advances in prostate cancer biology and treatment. The 2021 CHPCA Meeting was virtually attended by 89 investigators and included 31 talks over nine sessions.

View Article and Find Full Text PDF

Unlabelled: Metastatic prostate cancer is initially sensitive to androgen receptor inhibition, but eventually becomes castration-resistant prostate cancer (mCRPC). Early use of more intensive therapies targeting androgen receptor and other oncogenic drivers in treatment-naïve primary prostate cancer (PC) may be more effective than that in advanced mCRPC. However, analysis of primary tumors may not reveal targetable metastatic drivers that are subclonal in the primary tumor or acquired at metastatic sites.

View Article and Find Full Text PDF

One mechanism for reactivation of androgen receptor (AR) activity after androgen deprivation therapy in castration-resistant prostate cancer (CRPC) is expression of splice variants such as ARv7 that delete the ligand binding domain and have constitutive activity. Exogenous overexpressed ARv7 can function as a homodimer or heterodimer with full length AR (ARfl), which is highly expressed with ARv7 in CRPC. However, the extent to which endogenous ARv7 function is dependent on heterodimerization with ARfl remains to be determined.

View Article and Find Full Text PDF

Metastatic castration-resistant prostate cancer is typically lethal, exhibiting intrinsic or acquired resistance to second-generation androgen-targeting therapies and minimal response to immune checkpoint inhibitors. Cellular programs driving resistance in both cancer and immune cells remain poorly understood. We present single-cell transcriptomes from 14 patients with advanced prostate cancer, spanning all common metastatic sites.

View Article and Find Full Text PDF

Castration-resistant prostate cancers (CRPCs) lose sensitivity to androgen-deprivation therapies but frequently remain dependent on oncogenic transcription driven by the androgen receptor (AR) and its splice variants. To discover modulators of AR-variant activity, we used a lysate-based small-molecule microarray assay and identified KI-ARv-03 as an AR-variant complex binder that reduces AR-driven transcription and proliferation in prostate cancer cells. We deduced KI-ARv-03 to be a potent, selective inhibitor of CDK9, an important cofactor for AR, MYC, and other oncogenic transcription factors.

View Article and Find Full Text PDF

Despite the development of second-generation antiandrogens, acquired resistance to hormone therapy remains a major challenge in treating advanced prostate cancer. We find that cancer-associated fibroblasts (CAFs) can promote antiandrogen resistance in mouse models and in prostate organoid cultures. We identify neuregulin 1 (NRG1) in CAF supernatant, which promotes resistance in tumor cells through activation of HER3.

View Article and Find Full Text PDF

In this issue of , Rasool and colleagues show that TF11H/CDK7 phosphorylates the MED1 component of the Mediator complex, which enhances its interaction with androgen receptor (AR), and that this phosphorylation is increased in prostate cancer that is resistant to castration and enzalutamide. A covalent CDK7-specific inhibitor (THZ1) impairs AR-mediated MED1 recruitment to chromatin, and can suppress enzalutamide resistance and induce tumor regression in a castration-resistant prostate cancer xenograft model, suggesting a novel therapeutic approach for advanced prostate cancer..

View Article and Find Full Text PDF

In this issue of Cancer Cell, Gerhauser et al. analyze early-onset prostate cancers, showing roles for androgen receptor-driven rearrangements, an early APOBEC-driven mutational mechanism, and ESRP1 gene duplication. Through integration of whole-genome, transcriptome, and methylome data, they identify high-risk subgroups and develop an algorithm that may predict molecular evolution.

View Article and Find Full Text PDF

Background: Liquid biopsies have demonstrated that the constitutively active androgen receptor splice variant-7 (AR-V7) associates with reduced response and overall survival from endocrine therapies in castration-resistant prostate cancer (CRPC). However, these studies provide little information pertaining to AR-V7 expression in prostate cancer (PC) tissue.

Methods: Following generation and validation of a potentially novel AR-V7 antibody for IHC, AR-V7 protein expression was determined for 358 primary prostate samples and 293 metastatic biopsies.

View Article and Find Full Text PDF

The standard treatment for metastatic prostate cancer, androgen deprivation therapy (ADT), is designed to suppress androgen receptor (AR) activity. However, men invariably progress to castration-resistant prostate cancer (CRPC), and AR reactivation contributes to progression in most cases. To identify mechanisms that may drive CRPC, we examined a VCaP prostate cancer xenograft model as tumors progressed from initial androgen sensitivity prior to castration to castration resistance and then on to relapse after combined therapy with further AR-targeted drugs (abiraterone plus enzalutamide).

View Article and Find Full Text PDF

Phosphorylation of serine 81 (pS81) in the N-terminal transactivation domain of the androgen receptor (AR) has been linked to its transcriptional activation in prostate cancer (PCa) cell lines, but in vivo studies have been limited. Moreover, the role of pS81 in the reactivation of AR when tumors relapse after androgen deprivation therapy (castration-resistant prostate cancer, CRPC) has not been determined. In this study we validate a pS81 antibody for immunohistochemistry (IHC) and show it yields strong nuclear staining in primary PCa clinical samples and in the VCaP PCa xenograft model.

View Article and Find Full Text PDF
Article Synopsis
  • Primary prostate cancer exhibits significant microheterogeneity, which may contribute to the development of metastatic castration-resistant prostate cancer (mCRPC), but its exact role is still unclear.
  • This study involved microdissecting tumor samples from 18 men who received intensive androgen deprivation therapy, revealing persistent androgen receptor activity and an association between proliferation and decreased RB1 expression.
  • The results suggest that subclones with specific genetic alterations are present from primary cancer and that loss of RB1 may indicate a critical early event in the progression to mCRPC, highlighting potential avenues for more tailored treatment strategies.
View Article and Find Full Text PDF

Lung immaturity is the major cause of morbidity and mortality in premature infants, especially those born <28 weeks of gestation. These infants are at high risk of developing respiratory distress syndrome (RDS), a lung disease caused by insufficient surfactant production and immaturity of saccular/alveolar type II epithelial cells in the lung. RDS treatment includes oxygen and respiratory support that improve survival but also increase the risk for bronchopulmonary dysplasia (BPD), a chronic lung disease characterized by arrested alveolarization, airway hyperreactivity, and pulmonary hypertension.

View Article and Find Full Text PDF

Programmed cell death ligand-1 (PD-L1)/programmed cell death-1 (PD-1) blockade has been unsuccessful in prostate cancer, with poor immunogenicity and subsequent low PD-L1 expression in prostate cancer being proposed as an explanation. However, recent studies indicate that a subset of prostate cancer may express significant levels of PD-L1. Furthermore, the androgen antagonist enzalutamide has been shown to upregulate PD-L1 expression in prostate cancer preclinical models.

View Article and Find Full Text PDF

The molecular features that account for the distinct histology and aggressive biological behavior of Gleason pattern 4 (Gp4) versus Gp3 prostate cancer, and whether Gp3 tumors progress directly to Gp4, remain to be established. Whole-exome sequencing and transcriptome profiling of laser capture-microdissected adjacent Gp3 and cribiform Gp4 were used to determine the relationship between these entities. Sequencing confirmed that adjacent Gp3 and Gp4 were clonal based on multiple shared genomic alterations.

View Article and Find Full Text PDF

P-TEFb (CDK9/cyclin T) plays a central role in androgen receptor (AR)-mediated transactivation by phosphorylating both RNA polymerase 2 complex proteins and AR at S81. CDK9 dephosphorylation mobilizes P-TEFb from an inhibitory 7SK ribonucleoprotein complex, but mechanisms targeting phosphatases to P-TEFb are unclear. We show that AR recruits protein phosphatase 1α (PP1α), resulting in P-TEFb mobilization and CDK9-mediated AR S81 phosphorylation.

View Article and Find Full Text PDF

CCN5 is one of six proteins in the CCN family. This family of proteins has been shown to play important roles in many processes, including proliferation, migration, adhesion, extracellular matrix regulation, angiogenesis, tumorigenesis, fibrosis, and implantation. In this review, we focus on the biological and putative pathophysiological roles of CCN5.

View Article and Find Full Text PDF

CCN5, a member of the CCN family of growth factors, inhibits the proliferation and migration of smooth muscle cells in cell culture and animal models. Expressed in both embryonic and adult tissues, CCN5 exhibits a matricellular localization pattern characteristic of secreted proteins that are closely associated with the cell surface. In addition to this observed expression pattern, immunohistochemical evidence suggests the presence of nuclear CCN5 in some cells.

View Article and Find Full Text PDF

The CCN family of proteins typically consists of four distinct peptide domains: an insulin-like growth factor binding protein-type (IGFBP) domain, a Von Willebrand Factor C (VWC) domain, a thrombospondin type 1 repeat (TSP1) domain, and a carboxy-terminal (CT) domain. The six family members participate in many processes, including proliferation, motility, cell-matrix signaling, angiogenesis, and wound healing. Accumulating evidence suggests that truncated and alternatively spliced isoforms are responsible for the diverse functions of CCN proteins in both normal and pathophysiologic states.

View Article and Find Full Text PDF