Light transport contains all light information between a light source and an image sensor. As an important application of light transport, dual photography has been a popular research topic, but it is challenged by long acquisition time, low signal-to-noise ratio, and the storage or processing of a large number of measurements. In this Letter, we propose a novel hardware setup that combines a flying-spot micro-electro mechanical system (MEMS) modulated projector with an event camera to implement dual photography for 3D scanning in both line-of-sight (LoS) and non-line-of-sight (NLoS) scenes with a transparent object.
View Article and Find Full Text PDFModern machine learning has enhanced the image quality for consumer and mobile photography through low-light denoising, high dynamic range (HDR) imaging, and improved demosaicing among other applications. While most of these advances have been made for normal lens-based cameras, there has been an emerging body of research for improved photography for lensless cameras using thin optics such as amplitude or phase masks, diffraction gratings, or diffusion layers. These lensless cameras are suited for size and cost-constrained applications such as tiny robotics and microscopy that prohibit the use of a large lens.
View Article and Find Full Text PDFLight-transport represents the complex interactions of light in a scene. Fast, compressed, and accurate light-transport capture for dynamic scenes is an open challenge in vision and graphics. In this paper, we integrate the classical idea of Lissajous sampling with novel control strategies for dynamic light-transport applications such as relighting water drops and seeing around corners.
View Article and Find Full Text PDF