Publications by authors named "Joshua Ray Windmiller"

The present work describes an attractive skin-worn microneedle sensing device for the minimally invasive electrochemical monitoring of subcutaneous alcohol. The device consists of an assembly of pyramidal microneedle structures integrated with Pt and Ag wires, each with a microcavity opening. The microneedle aperture was modified by electropolymerizing o-phenylene diamine onto the Pt wire microtransducer, followed by the immobilization of alcohol oxidase (AOx) in an intermediate chitosan layer, along with an outer Nafion layer.

View Article and Find Full Text PDF

The realization of epidermal chemical sensing requires a fabrication methodology compatible with the non-planarity and irregularities of the human anatomy. This communication describes the development of printed temporary transfer tattoo (T3) electrochemical sensors for physiological and security monitoring of chemical constituents leading to the demonstration of 'electronic skin'.

View Article and Find Full Text PDF

This article describes a new alternative approach to the fabrication of printed electrochemical sensors and biosensors based on the transfer of electrode patterns comprising common conductive and insulating inks from elastomeric stamps to a wide variety of rigid and flexible substrates. This simple, low cost, yet robust methodology is demonstrated to be well-suited for the formation of electrochemical sensors on non-planar substrates and large objects/structures, which have traditionally been off-limits to conventional screen printing techniques. Furthermore, the stamped electrode devices are shown to exhibit electrochemical performance that rivals that of their screen printed counterparts and display resilience against severe mechanical deformation.

View Article and Find Full Text PDF

The development of wearable screen-printed electrochemical sensors on underwater garments comprised of the synthetic rubber neoprene is reported. These wearable sensors are able to determine the presence of environmental pollutants and security threats in marine environments. Owing to its unique elastic and superhydrophobic morphology, neoprene is an attractive substrate for thick-film electrochemical sensors for aquatic environments and offers high-resolution printing with no apparent defects.

View Article and Find Full Text PDF

The design and characterization of a microneedle array-based carbon paste electrode towards minimally invasive electrochemical sensing are described. Arrays consisting of 3 × 3 pyramidal microneedle structures, each with an opening of 425 µm, were loaded with a metallized carbon paste transducer. The renewable nature of carbon paste electrodes enables the convenient packing of hollow non-planar microneedles with pastes that contain assorted catalysts and biocatalysts.

View Article and Find Full Text PDF

The ability to assess diverse security threats using a biochemical logic network system is demonstrated. The new biocatalytic cascade, emulating a NOR logic gate, is able to identify the presence of explosive compounds and nerve agents by providing a simple and rapid 'YES'/'NO' alert.

View Article and Find Full Text PDF

A multi-enzyme biocatalytic cascade processing simultaneously five biomarkers characteristic of traumatic brain injury (TBI) and soft tissue injury (STI) was developed. The system operates as a digital biosensor based on concerted function of 8 Boolean AND logic gates, resulting in the decision about the physiological conditions based on the logic analysis of complex patterns of the biomarkers. The system represents the first example of a multi-step/multi-enzyme biosensor with the built-in logic for the analysis of complex combinations of biochemical inputs.

View Article and Find Full Text PDF

Experimental and theoretical analyses of the lactate dehydrogenase and glutathione reductase based enzymatic AND logic gates in which the enzymes and their substrates serve as logic inputs are performed. These two systems are examples of the novel, previously unexplored class of biochemical logic gates that illustrate potential biomedical applications of biochemical logic. They are characterized by input concentrations at logic 0 and 1 states corresponding to normal and pathophysiological conditions.

View Article and Find Full Text PDF

The development of a highly parallel enzyme logic sensing concept employing a novel encoding scheme for the determination of multiple pathophysiological conditions is reported. The new concept multiplexes a contingent of enzyme-based logic gates to yield a distinct 'injury code' corresponding to a unique pathophysiological state as prescribed by a truth table. The new concept is illustrated using an array of NAND and AND gates to assess the biomedical significance of numerous biomarker inputs including creatine kinase, lactate dehydrogenase, norepinephrine, glutamate, alanine transaminase, lactate, glucose, glutathione disulfide, and glutathione reductase to assess soft-tissue injury, traumatic brain injury, liver injury, abdominal trauma, hemorrhagic shock, and oxidative stress.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session58a9n19mtququ4qp727l7qe4mbfjhem2): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once