Peatland drainage is a large source of anthropogenic CO emissions. While conversion to agriculture is widely acknowledged to lead to "irrecoverable" carbon (C) losses, in contrast the C impacts of peatland forestry are poorly understood, especially in intensively managed plantations. Losses of C from peat oxidation are highly variable and can be compensated for by gains of C in trees, depending on the lifecycle of the timber and timescale considered.
View Article and Find Full Text PDFNorthern peatlands provide a globally important carbon (C) store. Since the beginning of the 20th century, however, large areas of natural peatlands have been drained for biomass production across Fennoscandia. Today, drained peatland forests constitute a common feature of the managed boreal landscape, yet their ecosystem C balance and associated climate impact are not well understood, particularly within the nutrient-poor boreal region.
View Article and Find Full Text PDFUnderstanding the dynamic changes in peatland area during the Holocene is essential for unraveling the connections between northern peatland development and global carbon budgets. However, studies investigating the centennial to millennial-scale process of peatland expansion and its climate and environmental drivers are still limited. In this study, we present a reconstruction of the peatland area and lateral peatland expansion rate of a peatland complex in northern Sweden since the mid-Holocene, based on Ground Penetrating Radar measurements of peat thickness supported by radiocarbon (C) dates from four peat cores.
View Article and Find Full Text PDFVegetation holds the key to many properties that make natural mires unique, such as surface microtopography, high biodiversity values, effective carbon sequestration and regulation of water and nutrient fluxes across the landscape. Despite this, landscape controls behind mire vegetation patterns have previously been poorly described at large spatial scales, which limits the understanding of basic drivers underpinning mire ecosystem services. We studied catchment controls on mire nutrient regimes and vegetation patterns using a geographically constrained natural mire chronosequence along the isostatically rising coastline in Northern Sweden.
View Article and Find Full Text PDFThe response of peatlands to climate change can be highly variable. Through understanding past changes we can better predict the response of peatlands to future climate change. We use a multi-proxy approach to reconstruct the surface wetness and carbon accumulation of the Mukhrino mire (Western Siberia), describing the development of the mire since peat formation in the early Holocene, around 9360 cal.
View Article and Find Full Text PDFPeatland biological, physical and chemical properties change over time in response to alterations in long-term water table position. Such changes complicate our ability to predict the response of peatland carbon stocks to sustained drying. In order to better understand the effect of sustained lowering of the water table on peatland carbon dynamics, we re-visited a drainage-affected bog, repeating eddy covariance measurements of CO flux after a 16-year interval.
View Article and Find Full Text PDFHigh water tables (WT) stabilise peatland carbon (C) through regulation of biogeochemical processes. The impact of peatland WT on ecosystem function, including C exchange, alters over time, and the factors that cause some peatlands to display resilience and others to undergo degradation are poorly understood. Here we use CO flux measurements, measured by eddy covariance, to compare ecosystem function between two raised bogs; one drainage-affected, with a deep and fluctuating water table and the other near-natural, with a shallow and stable water table.
View Article and Find Full Text PDF