Deep learning (DL)-based analytics has the scope to transform the field of atomic force microscopy (AFM) with regard to fast and bias-free measurement characterization. For example, AFM force-distance curves can help estimate important parameters of binding kinetics, such as the most probable rupture force, binding probability, association, and dissociation constants, as well as receptor density on live cells. Other than the ideal single-rupture event in the force-distance curves, there can be no-rupture, double-rupture, or multiple-rupture events.
View Article and Find Full Text PDFThe problem of the efficient design of material microstructures exhibiting desired properties spans a variety of engineering and science applications. The ability to rapidly generate microstructures that exhibit user-specified property distributions can transform the iterative process of traditional microstructure-sensitive design. We reformulate the microstructure design process using a constrained generative adversarial network (GAN) model.
View Article and Find Full Text PDF