Background: It is known that the heavy metals cobalt and chromium are associated with neurotoxicity. Chromium (Cr) and Cobalt (Co) are both components of metal-on-metal (MoM) implants which can be degraded/fragmented and released into the bloodstream. Neurofilament Light Chain (NfL) is a neuron-specific protein that increases in serum following axonal damage.
View Article and Find Full Text PDFIn mammals, l-cysteine (Cys) homeostasis is maintained by the mononuclear nonheme iron enzyme cysteine dioxygenase (CDO), which oxidizes Cys to cysteine sulfinic acid. CDO contains a rare post-translational modification, involving the formation of a thioether cross-link between a Cys residue at position 93 ( CDO numbering) and a nearby tyrosine at position 157 (Cys-Tyr cross-link). As-isolated CDO contains both the cross-linked and non-cross-linked isoforms, and formation of the Cys-Tyr cross-link during repeated enzyme turnover increases CDO's catalytic efficiency by ∼10-fold.
View Article and Find Full Text PDFl-Cysteine (Cys) is an essential building block for the synthesis of new proteins and serves as a precursor for several biologically important sulfur-containing molecules, such as coenzyme A, taurine, glutathione, and inorganic sulfate. However, organisms must tightly regulate the concentration of free Cys, as elevated levels of this semi-essential amino acid can be extremely harmful. The non-heme iron enzyme cysteine dioxygenase (CDO) serves to maintain the proper levels of Cys by catalyzing its oxidation to cysteine sulfinic acid.
View Article and Find Full Text PDFThe activation of O at thiolate-ligated iron(II) sites is essential to the function of numerous metalloenzymes and synthetic catalysts. Iron-thiolate bonds in the active sites of nonheme iron enzymes arise from either coordination of an endogenous cysteinate residue or binding of a deprotonated thiol-containing substrate. Examples of the latter include sulfoxide synthases, such as EgtB and OvoA, that utilize O to catalyze tandem S-C bond formation and -oxygenation steps in thiohistidine biosyntheses.
View Article and Find Full Text PDFParallel spectroscopic and computational studies of iron(III) cysteine dioxygenase (CDO) and synthetic models are presented. The synthetic complexes utilize the ligand tris(4,5-diphenyl-1-methylimidazol-2-yl)phosphine (TIP), which mimics the facial three-histidine triad of CDO and other thiol dioxygenases. In addition to the previously reported [Fe(CysOEt)(TIP)]BPh (; CysOEt is the ethyl ester of anionic l-cysteine), the formation and crystallographic characterization of [Fe(2-MTS)(TIP)]BPh () is reported, where the methyl 2-thiosalicylate anion (2-MTS) resembles the substrate of 3-mercaptopropionate dioxygenase (MDO).
View Article and Find Full Text PDFManipulating particles and cells in magnetic liquids through so-called "negative magnetophoresis" is a new research field. It has resulted in label-free and low-cost manipulation techniques in microfluidic systems and many exciting applications. It is the goal of this review to introduce the fundamental principles of negative magnetophoresis and its recent applications in microfluidic manipulation of particles and cells.
View Article and Find Full Text PDFThis paper reports a biocompatible and label-free cell separation method using ferrofluids that can separate a variety of low-concentration cancer cells from cell culture lines (∼100 cancer cells per mL) from undiluted white blood cells, with a throughput of 1.2 mL h and an average separation efficiency of 82.2%.
View Article and Find Full Text PDF