Publications by authors named "Joshua R Isaacson"

Transfer RNAs (tRNAs) are vital in determining the specificity of translation. Mutations in tRNA genes can result in the misincorporation of amino acids into nascent polypeptides in a process known as mistranslation. Since mistranslation has different impacts, depending on the type of amino acid substitution, our goal here was to compare the impact of different mistranslating tRNASer variants on fly development, lifespan, and behaviour.

View Article and Find Full Text PDF

Mistranslation is the misincorporation of an amino acid into a polypeptide. Mistranslation has diverse effects on multicellular eukaryotes and is implicated in several human diseases. In Drosophila melanogaster, a serine transfer RNA (tRNA) that misincorporates serine at proline codons (P→S) affects male and female flies differently.

View Article and Find Full Text PDF

Transfer RNAs (tRNAs) are vital in determining the specificity of translation. Mutations in tRNA genes can result in the misincorporation of amino acids into nascent polypeptides in a process known as mistranslation. Since mistranslation has different impacts, depending on the type of amino acid substitution, our goal here was to compare the impact of different mistranslating tRNA variants on fly development, lifespan, and behaviour.

View Article and Find Full Text PDF

Mistranslation is the misincorporation of an amino acid into a polypeptide. Mistranslation has diverse effects on multicellular eukaryotes and is implicated in several human diseases. In , a serine transfer RNA (tRNA) that misincorporates serine at proline codons (P→S) affects male and female flies differently.

View Article and Find Full Text PDF

Transfer RNAs (tRNAs) are the adaptor molecules required for reading the genetic code and producing proteins. Transfer RNA variants can lead to genome-wide mistranslation, the misincorporation of amino acids not specified by the standard genetic code into nascent proteins. While genome sequencing has identified putative mistranslating transfer RNA variants in human populations, little is known regarding how mistranslation affects multicellular organisms.

View Article and Find Full Text PDF

Transfer RNA (tRNA) variants that alter the genetic code increase protein diversity and have many applications in synthetic biology. Since the tRNA variants can cause a loss of proteostasis, regulating their expression is necessary to achieve high levels of novel protein. Mechanisms to positively regulate transcription with exogenous activator proteins like those often used to regulate RNA polymerase II (RNAP II)-transcribed genes are not applicable to tRNAs as their expression by RNA polymerase III requires elements internal to the tRNA.

View Article and Find Full Text PDF