Publications by authors named "Joshua R Harris"

Gut educated IgA secreting plasma cells that disseminate beyond the mucosa and into systemic tissues have been described as providing beneficial effects from disease in several contexts. Several bacteria have been implicated in the induction of systemic IgA, however the mechanisms that result in differential levels of induction by each bacterial species are still unknown. Here we show, the commensal bacteria, (), is an efficient inducer of systemic IgA responses.

View Article and Find Full Text PDF

Halomonas sp. O-1 is a halophilic bacterium with a high potential for industrial application due to its natural ability to produce polyhydroxyalkanoates (PHAs) using seawater-based media. However, a major barrier preventing industrial scale implementation of this organism is a lack of molecular methodologies capable of readily transforming members of the Halomonas genus.

View Article and Find Full Text PDF

A variety of soil-dwelling bacteria produce polyhydroxybutyrate (PHB), which serves as a source of energy and carbon under nutrient deprivation. Bacteria belonging to the genus Pseudomonas do not generally produce PHB but are capable of using the PHB degradation product (R)-3-hydroxybutyrate [(R)-3-HB] as a growth substrate. Essential to this utilization is the NAD+-dependent dehydrogenase BdhA that converts (R)-3-HB into acetoacetate, a molecule that readily enters central metabolism.

View Article and Find Full Text PDF

There is a wealth of information on the genetic regulation and biochemical properties of bacterial C4-dicarboxylate transport systems. In sharp contrast, there are far fewer studies describing the transport and assimilation of C5-dicarboxylates among bacteria. In an effort to better our understanding on this subject, we identified the structural and regulatory genes necessary for the utilization of α-ketoglutarate (α-KG) in Pseudomonas aeruginosa PAO1.

View Article and Find Full Text PDF