Publications by authors named "Joshua Peter"

While TGF-β signaling is essential for microglial function, the cellular source of TGF-β1 ligand and its spatial regulation remains unclear in the adult CNS. Our data supports that microglia but not astrocytes or neurons are the primary producers of TGF-β1 ligands needed for microglial homeostasis. Microglia-Tgfb1 KO leads to the activation of microglia featuring a dyshomeostatic transcriptome that resembles disease-associated, injury-associated, and aged microglia, suggesting microglial self-produced TGF-β1 ligands are important in the adult CNS.

View Article and Find Full Text PDF

Stalled ribosomes at the endoplasmic reticulum (ER) are covalently modified with the ubiquitin-like protein UFM1 on the 60S ribosomal subunit protein RPL26 (also known as uL24). This modification, which is known as UFMylation, is orchestrated by the UFM1 ribosome E3 ligase (UREL) complex, comprising UFL1, UFBP1 and CDK5RAP3 (ref. ).

View Article and Find Full Text PDF

Reversible modification of target proteins by ubiquitin and ubiquitin-like proteins (UBLs) is widely used by eukaryotic cells to control protein fate and cell behaviour. UFM1 is a UBL that predominantly modifies a single lysine residue on a single ribosomal protein, uL24 (also called RPL26), on ribosomes at the cytoplasmic surface of the endoplasmic reticulum (ER). UFM1 conjugation (UFMylation) facilitates the rescue of 60S ribosomal subunits (60S) that are released after ribosome-associated quality-control-mediated splitting of ribosomes that stall during co-translational translocation of secretory proteins into the ER.

View Article and Find Full Text PDF

Ubiquitin Fold Modifier-1 (UFM1) is a ubiquitin-like modifier (UBL) that is posttranslationally attached to lysine residues on substrates via a dedicated system of enzymes conserved in most eukaryotes. Despite the structural similarity between UFM1 and ubiquitin, the UFMylation machinery employs unique mechanisms that ensure fidelity. While physiological triggers and consequences of UFMylation are not entirely clear, its biological importance is epitomized by mutations in the UFMylation pathway in human pathophysiology including musculoskeletal and neurodevelopmental diseases.

View Article and Find Full Text PDF

Protein UFMylation, i.e., post-translational modification with ubiquitin-fold modifier 1 (UFM1), is essential for cellular and endoplasmic reticulum homeostasis.

View Article and Find Full Text PDF
Article Synopsis
  • The process of UFMylation, a type of protein modification, begins with the cleavage of pro-UFM1 to activate it, with UFSP2 being the only reported active protease in humans.
  • Surprisingly, even in the absence of UFSP2, cells still manage to mature UFM1, indicating another active protease, which has been identified as a non-canonical version of UFSP1.
  • The research highlights that while UFSP2 is involved in removing UFM1 from ribosomal subunits, UFSP1 plays a crucial role earlier in UFM1 maturation and regulating the activation of UFMylation.
View Article and Find Full Text PDF

Ubiquitin-fold modifier 1 (UFM1) is involved in neural and erythroid development, yet its biological roles in these processes are unknown. Here, we generated zebrafish models deficient in and that exhibited telomere shortening associated with developmental delay, impaired hematopoiesis and premature aging. We further report that HeLa cells lacking UFL1 have instability of telomeres replicated by leading-strand synthesis.

View Article and Find Full Text PDF

Incorporating chicken feather fibre (CFF) into natural based-nanocomposite comprising of glycerine plasticized-cassava starch binder with bentonite (BNT) as nanofiller, a thermal insulator (TIN) was synthesized. Central Composite Design (CCD) Response Surface Methodology was employed to carry out the experimental design using two factors (CFF and BNT) along with one response (thermal conductivity) to produce nine materials as insulators, comprising of 0%, 5%, and 10% BNT based on 8 g initial weight of CFF. A sample without CFF was used as the control.

View Article and Find Full Text PDF

In eukaryotes, Hsp110s are unambiguous cognates of the Hsp70 chaperones, in primary sequence, domain organization, and structure. Hsp110s function as nucleotide exchange factors (NEFs) for the Hsp70s although their apparent loss of Hsp70-like chaperone activity, nature of interdomain communication, and breadth of domain functions are still puzzling. Here, by combining single-molecule FRET, small angle X-ray scattering measurements (SAXS), and MD simulation, we show that yeast Hsp110, Sse1 lacks canonical Hsp70-like interdomain allostery.

View Article and Find Full Text PDF

DnaK or Hsp70 of Escherichia coli is a master regulator of the bacterial proteostasis network. Allosteric communication between the two functional domains of DnaK, the N-terminal nucleotide-binding domain (NBD) and the C-terminal substrate- or peptide-binding domain (SBD) regulate its activity. X-ray crystallography and NMR studies have provided snapshots of distinct conformations of Hsp70 proteins in various physiological states; however, the conformational heterogeneity and dynamics of allostery-driven Hsp70 activity remains underexplored.

View Article and Find Full Text PDF