Histone deacetylase (HDAC) enzymes 1-3 exist in several corepressor complexes and are viable drug targets. To date, proteolysis targeting chimeras (PROTACs) designed to target HDAC1-3 typically exhibit the selective degradation of HDAC3. Herein, we report cereblon-recruiting PROTACs that degrade HDAC1 with selectivity over HDAC3.
View Article and Find Full Text PDFIn this Stories piece, Josh Smalley, a postdoctoral research associate at the University of Leicester and finalist of The Great British Bake Off, discusses the parallels between chemistry and baking, revealing how he successfully combines the two.
View Article and Find Full Text PDFHistone deacetylases 1-3 (HDAC1, HDAC2, and HDAC3) and their associated corepressor complexes play important roles in regulating chromatin structure and gene transcription. HDAC enzymes are also validated drug targets for oncology and offer promise toward new drugs for neurodegenerative diseases and cardiovascular diseases. We synthesized four novel heterobifunctional molecules designed to recruit the mouse double minute 2 homologue (MDM2) E3 ligase to degrade HDAC1-3 utilizing the MDM2 inhibitor idasanutlin, known as proteolysis targeting chimeras (PROTACs).
View Article and Find Full Text PDFOver the past three decades, we have witnessed the progression of small molecule chemical probes designed to inhibit the catalytic active site of histone deacetylase (HDAC) enzymes into FDA approved drugs. However, it is only in the past five years we have witnessed the emergence of proteolysis targeting chimeras (PROTACs) capable of promoting the proteasome mediated degradation of HDACs. This is a field still in its infancy, however given the current progress of PROTACs in clinical trials and the fact that FDA approved HDAC drugs are already in the clinic, there is significant potential in developing PROTACs to target HDACs as therapeutics.
View Article and Find Full Text PDFClick chemistry was utilised to prepare a library of PROTACs based on entinostat a class I histone deacetylase (HDAC) inhibitor in clinical trials. A novel PROTAC JMC-137 was identified as a HDAC1/2 and HDAC3 degrader in HCT116 cells. However, potency was compromised compared to previously identified class I HDAC PROTACs highlighting the importance in the choice of HDAC ligand, functional group for linker attachment and positioning in PROTAC design.
View Article and Find Full Text PDFThe class I histone deacetylase (HDAC) enzymes;HDAC1,2 and 3 form the catalytic engine of at least seven structurally distinct multiprotein complexes in cells. These molecular machines play a vital role in the regulation of chromatin accessibility and gene activity via the removal of acetyl moieties from lysine residues within histone tails. Their inhibition via small molecule inhibitors has beneficial effects in a number of disease types, including the clinical treatment of hematological cancers.
View Article and Find Full Text PDFClass I histone deacetylase (HDAC) enzymes 1, 2, and 3 organize chromatin as the catalytic subunits within seven distinct multiprotein corepressor complexes and are established drug targets. We report optimization studies of benzamide-based Von Hippel-Lindau (VHL) E3-ligase proteolysis targeting chimeras (PROTACs) and for the first time describe transcriptome perturbations resulting from these degraders. By modifying the linker and VHL ligand, we identified PROTACs , , and with submicromolar DC values for HDAC1 and/or HDAC3 in HCT116 cells.
View Article and Find Full Text PDFHistone deacetylase (HDAC) enzymes play crucial roles in epigenetic gene expression and are an attractive therapeutic target. Five HDAC inhibitors have been approved for cancer treatment to date, however, clinical applications have been limited due to poor single-agent drug efficacy and side effects associated with a lack of HDAC isoform or complex selectivity. An emerging strategy aiming to address these limitations is the development of bifunctional HDAC therapeutics-single molecules comprising a HDAC inhibitor conjugated to another specificity targeting moiety.
View Article and Find Full Text PDFWe have identified a proteolysis targeting chimera (PROTAC) of class I HDACs 1, 2 and 3. The most active degrader consists of a benzamide HDAC inhibitor, an alkyl linker, and the von Hippel-Lindau E3 ligand. Our PROTAC increased histone acetylation levels and compromised colon cancer HCT116 cell viability, establishing a degradation strategy as an alternative to class I HDAC inhibition.
View Article and Find Full Text PDF